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EXECUTIVE SUMMARY1

2

The US EPA conducts risk assessments for an array of health effects that may result from3

exposure to environmental agents, and that require an analysis of the relationship between4

exposure and health-related outcomes.  The dose-response assessment is essentially a two-step5

process, the first being the definition of a point of departure (POD), and the second extrapolation6

from the POD to low environmentally-relevant exposure levels.  The benchmark dose (BMD)7

approach provides a more quantitative alternative to the first step in the dose-response8

assessment than the current NOAEL/LOAEL process for noncancer health effects, and is similar9

to that for determining the POD proposed for cancer endpoints (EPA, 1996).  As the Agency10

moves toward harmonization of approaches for cancer and noncancer risk assessment, the11

dichotomy between cancer and noncancer health effects is being replaced by consideration of12

mode of action and whether the effects of concern are likely to be linear or nonlinear at low13

doses.  Thus, the purpose of this document is to provide guidance for the Agency and the outside14

community on the application of the BMD approach in determining the POD for all types of15

health effects data, whether a linear or nonlinear low dose extrapolation is used.16

This guidance document discusses the computation of BMDs and benchmark17

concentrations (BMCs), their lower confidence limits, data requirements, dose-response analysis,18

and reporting requirements that are specific to the use of BMDs or BMCs.  The following19

convention for terminology has been adopted in this document: BMD is used generically to refer20

to the benchmark dose approach; in the more specific cases, BMD and BMC refer to the central21

estimates, for example the EDx or ECx for dichotomous endpoints (with x referring to some22

level of response above background, e.g., 5% or 10%).  BMDL or BMCL refers to the23

corresponding lower limit of a one-sided 95% confidence interval on the BMD or BMC,24

respectively.  This is consistent with the terminology introduced by Crump (1995) and with that25

used in the EPA’s BMD software (BMDS) which is freely available on the Internet at26

http://www.epa.gov/ncea/bmds.htm.  This terminology is a change, however, from that used in27

previous Agency documents (e.g., EPA, 1995), but has been adopted because it more clearly28

conveys the fact that the BMDL refers to the lower confidence limit on the dose that would result29
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in the required response. 1

As indicated above, the BMD approach is an alternative to the NOAEL/LOAEL approach2

that has been used for many years in dose-response assessment. The development of this3

approach has been pursued because of recognized limitations in the NOAEL/LOAEL approach. 4

However, it is likely that there will continue to be endpoints that are not amenable to modeling5

and for which a NOAEL/LOAEL approach must be used.  In some cases, there may be a6

combination of BMDs and NOAELs to be considered in the assessment of a particular agent, and7

the most appropriate value to use for dose-response assessment must be made by the risk assessor8

on the basis of scientific judgment and the modeling results.9

This document addresses a number of issues that must be resolved in order to apply the10

BMD approach for dose-response assessment in a consistent manner:11

1.  Determination of appropriate studies and endpoints on which to base BMD calculations;12

2.  Selection of the benchmark response (BMR) value;13

3.  Choice of the model to use in computing the BMD;14

4.  Details surrounding computation of the confidence limit for the BMD (BMDL); and15

5.  Reporting requirements for BMD and BMDL computation.16

Determination of appropriate studies and endpoints on which to base BMD calculations. 17

Following the hazard characterization and selection of appropriate endpoints to use for the dose-18

response assessment, the studies appropriate for modeling and BMD analysis can be evaluated. 19

All studies that show a graded monotonic response with dose likely will be useful for BMD20

analysis, and the minimum data set for calculating a BMD should at least show a significant21

dose-related trend in the selected endpoint(s).  It is preferable to have studies with one or more22

doses near the level of the BMR to give a better estimate of the BMD, and thus, a shorter23

confidence interval.  Studies in which all the dose levels show changes compared with control24

values (i.e., there is no NOAEL) are readily useable in BMD analyses, unless the lowest response25

level is much higher than the BMR. 26

There are at least three types of endpoint data: dichotomous (quantal), continuous, and27

categorical.  This guidance provides definitions of these three types of data, and what information28

is needed in order to model the responses.  For example, a dichotomous response may be29
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reported as either the presence or absence of an effect, a continuous response may be reported as1

an actual measurement, or as a contrast (absolute change from control or relative change from2

control).  In the case of continuous data, when individual data are not available, the number of3

subjects, mean of the response variable, and a measure of response variabilit y (e.g., standard4

deviation (SD), standard error (SE), or variance) are needed for each group.  For categorical data,5

the responses in the treatment groups are often characterized in terms of the severity of effect6

(e.g., mild, moderate, or severe histological change).  In general, endpoints that have been judged7

by the risk assessor to be appropriate and relevant to the exposure should be modeled if their8

LOAEL is up to 10-fold above the lowest LOAEL.  This will help ensure that no endpoints with9

the potential to have the lowest BMDL are excluded from the analysis on the basis of the value of10

the LOAEL or NOAEL.   Selected endpoints from different studies that are likely to be used in11

the dose-response assessment should all be modeled, especially if different uncertainty factors12

may be used for different studies and endpoints.  As indicated above, the selection of the most13

appropriate BMDs and/or NOAELs (if some endpoints cannot be modeled) to use for14

determination of the POD must be made by the risk assessor using scientific judgement and15

principles of risk assessment, as well as the results of the modeling process.16

Selection of the benchmark response (BMR) value.  The calculation of a BMD is directly17

determined by the selection of the BMR.  This guidance provides default criteria to be used for18

selecting the BMR in the case of quantal data and continuous data.  For quantal data, an excess19

risk of 10% is the default BMR, since the 10% response is at or near the limit of sensitivity in20

most cancer bioassays and in some noncancer bioassays as well .  If a study has greater than usual21

sensitivity, then a lower BMR can be used, although the ED10 and LED10 should always be22

presented for comparison purposes.23

For continuous data, if there is an accepted level of change in the endpoint that is24

considered to be biologically significant then that amount of change is the BMR.  Otherwise, if25

individual data are available and a decision can be made about what individual levels should be26

considered adverse, the data can be “dichotomized” based on that cutoff value, and the BMR set27

as above for quantal data.  Alternatively, in the absence of any other idea of what level of28

response to consider adverse, a change in the mean equal to one control SD from the control29
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mean can be used.  The control SD can be computed including historical control data, but the1

control mean must be from data concurrent with the treatments being considered.  Regardless of2

which method of defining the BMR is used for a continuous dataset, the effective dose3

corresponding to one control SD from the control mean response, as would be calculated for the4

latter definition, should always be presented for comparison purposes.5

Choice of the model to use in computing the BMD.   The goal of the mathematical6

modeling in BMD computation is to fit a model to dose-response data that describes the data set,7

especially at the lower end of the observable dose-response range.  In practice, this involves first8

selecting a family or families of models for further consideration, based on characteristics of the9

data and experimental design, and fitting the models using one of a few established methods. 10

Subsequently, a lower bound on dose is calculated at the BMR.  The guidance document11

introduces the topic of dose-response modeling and provides information on model selection for12

different types of data.  In addition, model fitting, determining goodness-of-fit, and comparing13

models to decide which one to use for obtaining the POD are discussed.  The guidance14

recommends that � =0.1 be used to compute the criti cal value for goodness of f it, instead of the15

more conventional values of 0.05 or 0.01, and that a graphical display of the model fit be16

examined as well .  For comparison of models and selection of the model to use for BMDL17

computation, the use of Akaike’s Information Criterion (AIC) is recommended.18

Computation of the confidence limit for the BMD (BMDL).  The guidance document19

discusses the computation of the confidence limit for the BMD, the fact that the method by which20

the confidence limit i s obtained is typically related to the data type, and the manner in which the21

BMD is estimated from the model.  Details for approaches to CI computation specific to22

particular data types (quantal, clustered, continuous, multiple outcomes) are provided in the23

document.  24

Reporting requirements from the BMD/BMDL calculations.  The guidance document lists25

a number of reporting requirements for the BMD and BMDL.  These are considered important26

for the risk assessor to judge whether or not the choice of studies and endpoints for modeling has27

been done appropriately and whether the most appropriate BMD and BMDL have been selected28

as the POD for low dose extrapolation.29
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In summary, the guidance document provides a decision tree that discusses step-by-step1

the process to be used in evaluating studies and endpoint types that are appropriate for modeling,2

selecting the BMR level,  model fitting and BMD computation, judging the fit of the model, and3

the calculation of the BMDL.  Finally, the document provides several examples of BMD and4

BMDL derivation using the EPA BMDS software.   5
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I. INTRODUCTION1

2

3

A. Purpose of This Guidance Document 4

5

The purpose of this document is to provide guidance for the Agency and the outside6

community on the application of the benchmark dose approach to determining the point of7

departure (POD) for linear or nonlinear extrapolation of health effects data. This guidance8

discusses computation of benchmark doses and benchmark concentrations (BMDs and BMCs)9

and their lower confidence limits, data requirements, dose-response analysis, and reporting10

requirements. The document provides guidance based on today's knowledge and understanding,11

and on experience gained in using this approach.  The Agency is actively applying this12

methodology and evaluating the outcomes for the purpose of gaining experience in using it with13

a variety of endpoints. This document is intended to be updated as new information becomes14

available that would suggest approaches and default options alternative or additional to those15

indicated here and should not be viewed as precluding additional research on modified or16

alternative approaches that will im prove quantitative risk assessment.  In fact, the use of17

improved scientific understanding and development of more mechanistically-based approaches to18

dose-response modeling is strongly encouraged by the Agency.19

Benchmark dose modeling is a highly technical exercise and this guidance is a technical20

document generally targeted at readers with suff icient background in this area.  The document is21

not intended as a primer on modeling or risk assessment.  The availabilit y of software to facilit ate22

the analysis can make the modeling appear deceptively simple, but often interpretation of the23

results is not trivial.  It is recommended that BMD modeling be performed by or in collaboration24

with a statistician or someone familiar with the potential pitfalls of this type of analysis. 25

Similarly, this document is not intended as a primer on toxicology; the procedures described26

herein do not replace the expert judgements of toxicologists and others who address the hazard27

characterization issues in risk assessment.  Expert judgements on study quality, toxicological28

significance of observed effects, etc., are required independent of the use of BMD analysis and29
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are beyond the scope of this document.  It is li kewise beyond the scope of this document to1

provide guidance for RfC, RfD, or cancer potency computation, which are also more general risk2

assessment issues. 3

Since the methods for BMD computation require appropriate software, another purpose4

of this document is to provide enough information about preferred computational algorithms to5

allow users to make an informed choice in the selection of that software.  The document does not6

advocate use of any particular software package, although it is recommended that software with7

well documented algorithms, such as the Agency’s BMDS package, be used.  Nor is this8

guidance intended to document any particular software package, although it will present9

examples for ill ustrative purposes that use the Agency’s BMDS package.  It is also expected that10

this guidance will i nform the design of studies for the computation of BMDs and dose-response11

analysis, though this will not be covered explicitl y.12

13

B.  Background14

15

The US EPA conducts risk assessments for an array of health effects that may result from16

exposure to environmental agents.  The process of risk assessment, based on the National17

Research Council paradigm (NRC, 1983), has several steps: hazard characterization, dose-18

response assessment, exposure assessment, and risk characterization.  Hazard characterization19

includes a thorough evaluation of all the available data to identify and characterize potential20

health hazards.  Dose-response assessment involves an analysis of the relationship between21

exposure to the chemical and health-related outcomes, and historically has been done very22

differently for cancer and noncancer health effects because of perceived differences between the23

mechanistic underpinnings of cancer and other toxic effects.  As our understanding of the24

underlying biology of toxic effects has grown, however, the apparent differences between cancer25

and noncancer effects have lessened, to the point where it seems reasonable to develop26

quantitative methods based on similar considerations for all types of health effects, and to make27

approaches to dose-response assessment as consistent across health endpoints as our current28

mechanistic understanding allows.  This section provides an overview of EPA’s approaches to29
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dose-response assessment for cancer and non-cancer effects, and of the basis for developing more1

broadly applicable quantitative methods.2

The primary distinction between characterizing risks of cancer and noncancer effects has3

been the expectation that cancer induction could result from even a single gene mutation in a4

single cell , while noncancer effects were generally assumed to occur only if a minimum, but5

possibly large, amount of damage had occurred.  The practice for assessing dose-response for6

cancer effects has been to fit a statistical model (linearized multistage procedure) to tumor7

incidence data, and to assume low dose linearity to extrapolate risk at lower doses (USEPA,8

1986).  The modeling addresses variabilit y in the data through an upper 95% bound on the slope9

of the relationship between exposure and risk at very low risk levels, typically 10-5 to 10-6.10

In contrast, the standard practice for the dose-response analysis of health effects other11

than cancer has been to estimate the minimum dose not to be exceeded, by identifying a lowest-12

observed-adverse-effect-level (LOAEL) and a no-observed-adverse-effect-level (NOAEL) from13

an appropriate study.  The LOAEL is the lowest dose for a given chemical at which adverse14

effects have been detected, while the NOAEL is the highest dose at which no adverse effects15

have been detected.  The NOAEL (or LOAEL, if a NOAEL is not present) is adjusted downward16

by uncertainty factors intended to account for limitations and uncertainties in the available data,17

to arrive at an exposure that is li kely to be without an appreciable risk of deleterious effects in18

humans, that is, the reference dose (RfD) or reference concentration (RfC).  Unlike cancer dose-19

response modeling, variabilit y in the observed responses is not addressed.20

It has been tempting to use the dose level below which no effects are observed in a study21

(sometimes called a “practical threshold”) as an important point for describing a dose-response22

curve because of a presumed relationship between such a practical threshold and true thresholds23

(i.e., true no effect levels) in the dose-response.  In fact, the practical threshold is really a24

consequence of the fact that any finite study has an inherent limit of detection, and is of littl e25

practical utilit y in describing toxicological dose-responses.  In other words, the NOAEL does not26

represent a biological threshold and does not imply that lower exposure levels are without risk.27

Specific limitations of the NOAEL/LOAEL approach are well known and have been discussed28

extensively (Crump, 1984; Gaylor, 1983; Kimmel and Gaylor, 1988; Leisenring and Ryan, 1992;29



1Note that for a study utili zing 6 animals per dose group, the 95% upper confidence limit (UCL)
on an observed adverse response rate of 0% is 49%.  That is, NOAELs chosen on the basis of no
observed response in 6 animals could be too high a substantial proportion of the time.  The 95%
UCLs for groups of 10, 20 and 50 animals are 31% , 17%, and 7%, respectively, underscoring the
importance of adequate sample sizes.

4

EPA, 1986b, 1988a,b, 1989c; 1995c):1

• The NOAEL/LOAEL is highly dependent on dose selection since the NOAEL/LOAEL is2

limited to being one of the doses included in a study.3

• The NOAEL/LOAEL is highly dependent on sample size.  The abilit y of a bioassay to4

distinguish a treatment response from a control response decreases as sample size5

decreases1, so that the NOAEL for a compound (and thus the POD) will t end to be higher6

in studies with smaller numbers of animals per dose group.7

• More generally, the NOAEL/LOAEL approach does not account for the uncertainty in the8

estimate of the dose-response which is due to the characteristics of the study design.9

• NOAELs/LOAELs do not correspond to consistent response levels for comparisons10

across studies/chemicals/endpoints and for use as PODs for the derivation of RfCs.11

• The slope of the dose-response curve is not taken into account in the selection of a12

NOAEL or LOAEL, and is not usually considered unless the slope is very steep or very13

shallow.14

• A LOAEL cannot be used to derive a NOAEL when a NOAEL does not exist in a study. 15

Instead, a tenfold uncertainty factor has been routinely applied to the LOAEL to account16

for this limitation.17

• While the NOAEL has typically been interpreted as a threshold (no-effect level),18

simulation studies (i.e, Leisenring and Ryan, 1992) and reanalyses of developmental19

toxicity bioassay data (Allen et al, 1994a) have demonstrated that the rate of response20

above control at doses fitting the criteria for NOAELs, for a range of study designs, is21

about 5-20% on average, not 0%. 22

23

In an effort to address some of the limitations of the LOAEL and NOAEL, Crump (1984)24

proposed the benchmark dose (BMD) approach as an alternative (see section I.C. for more25
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details).  Benchmark dose modeling makes no particular assumption about the nature of1

toxicological dose-responses, other than that the change in response generally does not decrease2

with higher doses.  In particular, there is no specific assumption of the relationship between a3

putative no-effect level in the dose-response and the benchmark dose.  The goal of the BMD4

approach is to define a starting point of departure (POD) for the computation of a reference value5

(e.g., the  RfD or RfC) or for linear low-dose extrapolation that is more independent of study6

design. 7

The BMD approach parallels the recommendations in EPA's Proposed Guidelines for8

Carcinogen Risk Assessment (1996a) regarding modeling tumor data and other (non-cancer)9

responses thought to be important precursor events in the carcinogenic process.  The proposed10

guidelines promote the understanding of an agent’s mode of action in determining the dose-11

response(s).  Moreover, the dose-response extrapolation procedure follows conclusions in the12

hazard assessment about the agent’s carcinogenic mode of action.  The dose-response assessment13

under the proposed guidelines is a two-step process: (1) response data are modeled in the range14

of empirical observation -- modeling in the observed range is done with biologically-based, case-15

specific, or appropriate curve-fitting models; and then (2) extrapolation below the range of16

observation is accomplished by modeling if there are suff icient data or by a default procedure17

(linear, nonlinear, or both).  For the default procedures, a point of departure (POD) for18

extrapolation is estimated from this modeling.  The linear default is a straight-line extrapolation19

to the background response level from the POD, while the nonlinear default approach begins at20

the identified POD and provides either a margin of exposure (MOE) analysis or a reference value21

such as and RfD or RfC rather than estimating the probabilit y of effects at low doses.22

In the case of deriving reference values for noncancer effects, the POD is adjusted23

downward, to account for the uncertainty that is contributed by extrapolation from experimental24

animals to humans and to account for within human variabilit y, as well as other limitations in the25

available data.  Note that the NOAEL or LOAEL has been used as a default POD for low dose26

estimation or extrapolation, so that the primary difference between the two approaches is in how27

the starting point is determined.  The POD for BMD modeling is the BMDL, or the lower 95%28

bound on the dose/exposure associated with the benchmark response, typically 10% above the29
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control response.  Using the lower bound accounts for the uncertainty inherent in a given study,1

and assures (with 95% confidence) that the desired BMR is not exceeded (see section II.B. for a2

complete discussion of selecting the benchmark response).3

As detailed above, the BMD approach is generally a preferable alternative to the4

NOAEL/LOAEL approach.  For instance, a BMDL can be estimated even when all doses in a5

study are associated with a significant adverse response (i.e., when there is no NOAEL).  Note,6

however, that there are some instances in which the NOAEL/LOAEL is the better choice.  In7

particular, the available data may not be amenable to modeling, such as when all i ndividuals in8

exposed groups respond.  In such a case, BMD models may fail to fit the observed data, which9

provide very littl e resolution in the region of the benchmark response (usually 10%) anyway10

(although in such a case, the LOAEL is not very informative, either).  Another circumstance may11

happen when an observed effect is so rare that it is not statistically significantly different from12

the control response, but may be found to be biologically meaningful (e.g., an increase in a rare13

malformation).14

Note that the literature has used the terms BMD and BMDL in a confusing way (Crump,15

1984, 1995).  There is frequent need to refer to the central estimate and the lower confidence16

limit , as well as a more generically-defined point of departure in discussions of dose-response17

assessment.  In this document, when talking in technical detail about the process of deriving18

benchmark doses, “BMD” or “BMC” will refer to the central estimate of the dose that is19

expected to yield the BMR, for example, the ED10, or EC10, and “BMDL” or “BMCL” will refer20

to the lower end of a one-sided confidence interval for that central estimate.  “BMD” will be used21

to refer to the entire process.  The POD for low dose extrapolation or for setting the RfD/C will22

be the BMDL or BMCL.  To simpli fy further discussion in this document, we will use BMD and23

BMDL generically to mean oral or inhalation values, unless stated otherwise.24

Illustrative Example:    Using the BMD approach, the experimental data are modeled, and25

the benchmark dose (BMD) in the observable range is estimated (see Fig. 1).  Unlike NOAELs26

and LOAELs, the BMD is not constrained to be one of the experimental doses, and the BMDL27

can thus be used as a more consistent POD than either the LOAEL or NOAEL.  The BMDL28

accounts for the uncertainty in the estimate of the dose-response that is due to characteristics of29



7

Figure 1  Sample of a model fit to dichotomous data, with
BMD and BMDL indicated.  The fraction of animals affected
in each dose group is indicated by diamonds. The error bars
indicate 95% confidence intervals for the fraction affected. 
The BMR for this example is an Extra Risk of 10%.  The
dashed curve indicates the BMDL for a range of BMRs.  The
dose labeled BMDL corresponds to the lower end of a one-
sided 95% confidence interval for the BMD.

the experimental design.  The BMD approach models all of the data in a study and the shape of1

the dose-response curve is integral to the BMDL estimation.2

Since the benchmark dose procedure is quite general, a number of issues need to be3

addressed before benchmark doses can be used in a consistent manner for dose-response4

assessment:5

1. how to select studies on which to base BMD calculations;6

2. selection of endpoints on which to base BMD calculations;7

3. selection of the benchmark response (BMR) value;8

4. choice of the model to use in computing the BMD;9

5. details surrounding computation of the confidence limit for the BMD (BMDL);10

6. what information from the BMD calculation should be reported11

These issues will be covered in some detail in the following chapters.12

13
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C. A Brief Review of Literature Relating to Benchmark Dose 1

1. Earlier uses of benchmark modeling in dose-response assessment2

Benchmark dose-like approaches to dose-response assessment are not new.  The3

procedure of Mantel and Bryan (1961) formerly was used widely for conservative low-dose4

cancer risk assessment.  Their procedure calculated an upper confidence limit on the excess5

tumor incidence at the lowest experimental dose or an upper confidence limit on the tumor6

incidence at the dose estimated to produce a 1% tumor incidence, essentially a benchmark dose. 7

Assuming a probit-log dose model, a conservative low-dose slope of one probit per factor of 108

reduction in dose below the upper limit on the benchmark dose was used to provide an upper9

bound estimate of cancer incidence at low doses.  Gaylor and Kodell (1980), Van Ryzin (1980),10

and Farmer et al. (1982) proposed low-dose linear extrapolation to zero excess risk from the11

upper confidence limit on the excess incidence above background of an adverse effect at the12

lowest experimental dose or dose corresponding to a 1% incidence, again, a benchmark dose, to13

provide an upper bound on low-dose risks for convex (sublinear) dose-response curves.  Gaylor14

(1983) and Krewski et al. (1984) compare linear extrapolation and safety factors for controlling15

low-dose risk.  Crump (1984) first coined the term "benchmark dose," although variations of a16

benchmark dose procedure had been in use since the process developed by Mantel and Bryan17

(1961).18

2. Properties of the Benchmark Dose19

A number of research efforts, many of which have dealt with reproductive and20

developmental toxicity data, have provided extremely useful information for application of the21

BMD approach (e.g., Alexeeff et al., 1993; Catalano et al., 1993; Chen et al., 1991; Krewski and22

Zhu, 1994, 1995; Auton, 1994; Crump, 1995; Fowles, et al., 1999).  In a series of papers by23

Faustman et al. (1994), Allen et al. (1994a and b), and Kavlock et al. (1995), the BMD approach24

was applied to a large database of developmental toxicity studies.  In brief, the results of these25

studies showed that when the data were expressed as the proportion of affected fetuses per litter26

(nested dichotomous data), the NOAEL was on average 0.7 times the BMDL for a 10%27

probability of response, and was approximately equal, on average, to the BMDL for a 5%28

probability of response.  When data were expressed as counts of dichotomous endpoints (i.e.,29
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number of litters per dose group with resorptions or malformations), the NOAEL was1

approximately 2-3 times higher than the BMDL for a 10% probabilit y of response above control2

values (approximately 20 animals per dose group), and 4-6 times higher than the BMDL for a 5%3

probabilit y of response. Expressing the data as the proportion of affected fetuses per litter  is the4

more appropriate way to analyze developmental toxicity data.  However, the results of the5

quantal data analysis also may apply to using the BMDL approach with other quantal data, and6

suggest that the NOAEL in these cases may be at or above the 10% true response level,7

depending on sample size and background rate.  8

Since reduced fetal weight in developmental toxicity studies often shows the lowest9

NOAEL among the various endpoints evaluated, the application of the BMD to these continuous10

data also was evaluated (Kavlock et al., 1995).  A variety of cutoff values was explored for11

defining an adverse level of weight reduction below control values.  In some cases, data were12

analyzed using a continuous power model, and in other cases, the data were transformed to13

dichotomous data.  Comparisons with the NOAEL showed that several cutoff values could be14

used to give values similar to the NOAEL. These analyses suggest ways in which BMDLs may15

be developed for continuous data from a variety of endpoints.16

Fowles, et al. (1999) examined acute inhalation lethality data, and compared NOAELs to17

benchmark doses corresponding to 1%, 5%, and 10% response incidences.  Sample sizes18

averaged around10 – 20 animals per dose group.  Similarly to the “quantal” parts of the results of19

the Allen et al. (1994, a and b) studies, BMDLs based on 10% incidence corresponded20

approximately to NOAELS.  However, because the dose-response for lethality is so steep,21

BMDLs for 5% and 1% incidences were very close to those for 10% incidence.  As a result, the22

BMDLs for a 1% incidence were on average only about 1.6 or 3.6 times smaller than a NOAEL,23

depending on whether a log-probit or Weibull model was used.24

A simulation study by Kavlock et al. (1996) examined various aspects of study design25

(number of dose groups, dose spacing, dose placement, and sample size per dose group) for two26

endpoints of developmental toxicity (incidence of malformations and reduced fetal weight).  Of27

the designs evaluated, the best results (that is, those with the shortest confidence intervals) were28

obtained when two dose levels had response rates above the background level, one of which was29
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near the BMR.  In this study, there was virtually no advantage in increasing the sample size from1

10 to 20 litters per dose group.  When neither of the two dose groups with response rates above2

the background level was near the BMR, satisfactory results were also obtained, but the BMDLs3

tended to be lower.  When only one dose level with a response rate above background was4

present and near the BMR, reasonable results for the maximum likelihood estimate and BMDL5

were obtained, but in this case, there were benefits of larger dose group sizes.  The poorest6

results were obtained when only a single group with an elevated response rate was present, and7

the response rate was much greater than the BMR.8

3. Approaches to BMD Computation9

Many noncancer health effects are characterized by multiple endpoints that are not10

completely independent of one another.  Lefkopoulou et al. (1989), Chen et al. (1991), Ryan11

(1992), Catalano et al. (1993), Zhu et al. (1994), Krewski and Zhu (1995), and Fung et al. (1998)12

have worked on this issue using developmental toxicity data, and have shown that, in general, the13

BMDL derived from a multinomial modeling approach is lower than that for any individual14

endpoint.  This approach has not been applied to other health effects data, but should be kept in15

mind when multiple related outcomes are being considered for a particular health effect.16

Dose-response modeling for continuous endpoints is made more difficult because there is17

not a natural probability scale in which to characterize risk.  Of course, one approach is to18

explicitly dichotomize such continuous endpoints, and then model the explicitly dichotomized19

endpoints as any other quantal endpoint.  In separate 1995 papers, Crump and Kodell et al.20

detailed a new approach to deriving a BMDL for continuous data based on a method originally21

proposed by Gaylor and Slikker (1990).  This approach makes use of the distribution of22

continuous data, estimates the incidence of individuals falling above or below a level considered23

to be adverse or at least abnormal, and gives the probability of responses at specified doses above24

the control levels.  This results in an expression of the data in the same terms as that derived25

from analyses of quantal data, that is, it implicitly dichotomizes the data while retaining the full26

power of modeling the continuous data while allowing direct comparison of BMDs and BMDLs27

derived from continuous and quantal data.  Gaylor (1996) compared benchmark doses computed28

for continuous endpoints directly to those computed after first explicitly dichotomizing the data,29
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and found that, even for moderate sample sizes, substantial precision was lost upon explicitly1

dichotomizing the data.  West and Kodell (1999) compared such an implicit method for2

continuous data to the result of modeling explicitly dichotomized endpoints.  They found that, for3

sample sizes in the range of 10 to 20 animals per dose group, the implicit approach gave4

substantially better results than did the approach of modeling explicitly dichotomized data.  Thus,5

when it is possible to do, it is generally better to derive BMDs and BMDLs for continuous data6

from models of the continuous data (perhaps using the hybrid approaches described by Gaylor7

and Slikker, 1990, Crump, 1995 or Kodell et al., 1995).8

Most approaches to benchmark dose modeling have focused on modeling a single or9

multiple responses from a single study.  Categorical regression modeling (Dourson et al., 1985;10

Hertzberg, 1989; Hertzberg and Miller, 1985; Guth et al, 1997; Simpson et al, 1996ab) allows the11

results for multiple endpoints across studies to be used to make an overall assessment of the12

toxicity of a compound, based on a larger data base.  Although so far this method has not been13

widely used for benchmark dose computation, it shows promise as a way to more quantitatively14

and rigorously combine information from a rich database.15

Bayesian approaches to benchmark dose calculation express the uncertainty in the16

benchmark dose estimate with a probability distribution (in Bayesian parlance, the posterior17

distribution), in contrast to the confidence limits used by the more commonly used frequentist18

approach (Hasselblad and Jarabek, 1995).  Although the Bayesian approach has not been widely19

used so far, it has some potentially useful features. It would be relatively easy to combine results20

from different data sets to provide a more robust estimate, along with an evaluation of the21

uncertainty in that estimate that would take into account the variability among studies.  This22

would be a clear improvement over the more widely used methods, which only quantify the23

uncertainty inherent in a single study.24

Gaylor, et al. (1998) reviewed statistical methods for computing benchmark doses, and25

Murrel et al. (1998) discussed some consequences of basing the benchmark dose on a confidence26

limit and suggested an approach for setting benchmark response levels for continuous endpoints.27

28

29
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4. General Discussions of Standards for the Benchmark Dose1

Several workshops and symposia have been held to discuss the application of the BMDL2

and appropriate methodology (Kimmel et al., 1989; California EPA, 1993; Beck et al., 1993;3

SRA Symposium, 1994; Barnes et al., 1995).  The participants at the EPA/AIHC workshop4

(Barnes et al., 1995) generally endorsed the application of the BMD approach for all quantal5

noncancer endpoints and particularly for developmental toxicity, where a good deal of research6

has been done.  Less information was available at the time of the workshop on the application of7

the BMD approach to continuous data, and more work was encouraged.  A number of other8

issues concerning the application of the BMD approach were discussed.  The guidance and9

default options set forth in the current document are based in part on the outcome of this10

workshop, the background document (EPA, 1995c), and on more recent information and11

discussions, including those at a peer consultation workshop on the 1996 draft of this report12

(USEPA, 1996).13



13

II.  BENCHMARK DOSE GUIDANCE1

2

This section describes the proposed approach for carrying out a complete BMDL analysis. 3

It is organized in the form of a decision process including the rationale and defaults for4

proceeding through the analysis, and follows a similar framework to that outlined in the5

background document (EPA, 1995c).  The guidance here imposes some constraints on the6

BMDL analysis through decision criteria, and provides defaults when more than one feasible7

approach exists.8

9

A.  Data Evaluation and Endpoint Selection10

11

The first step in the process of hazard characterization is a complete review of the toxicity12

data available on an agent to identify and characterize the hazards related to a particular13

compound or exposure situation.  This involves the determination of adverse effects or14

precursors of adverse effects from all available data and the most appropriate endpoints, the so-15

called “criti cal effect(s),”  on which to base the NOAEL or BMD.  Guidance on review of16

endpoint data for hazard characterization can be found in a number of EPA publications (EPA,17

1991a, 1994c, 1995f, 1996a and b). This process is essentially the same whether using a BMD or18

a NOAEL approach.  The following discussion summarizes some of the more important issues19

related to study design and data reporting when using the BMD approach.  This guidance does20

not change the way in which hazard characterization is done, particularly regarding the21

determination of adversity and selection of endpoints.  It does discuss the types of data and study22

designs most amenable to dose-response modeling, but allows for the possibilit y that NOAELs23

will continue to be used for some endpoints, and that in some cases there will be a combination24

of BMDs and NOAELs to be considered in the assessment of a particular agent.25

26
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1.  Data Evaluation1

a.  Design2

 In general, studies with more dose groups and a graded monotonic response with dose3

will be more useful for BMD analysis.  Studies with only a single dose showing a response4

different from controls may not be appropriate for BMD analysis, though if the one elevated5

response is near the BMR, adequate BMD and BMDL computation may result (see Kavlock, et6

al, 1996).  Studies in which responses are only at the same level as background or at or near the7

maximal response level are not considered adequate for BMD analysis.  It is preferable to have8

studies with one or more doses near the level of the BMR to give a better estimate of the BMD,9

and thus, a shorter confidence interval .  Studies in which all dose levels show changes compared10

with control values (i.e., no NOAEL) are readily useable in BMD analyses, unless the lowest11

response level is much higher than that at the BMR.12

b.  Aspects of Data Reporting 13

In many cases, the risk assessor must rely on published reports of key toxicological14

studies in performing a dose-response assessment.  Reports from the peer-reviewed literature15

may contain summary information which can vary in completeness vis-a-vis the data16

requirements of the BMD method.  The optimal situation is to have information on individual17

subjects, but this is unlikely in published reports.  It is more common to have summary18

information (group level information, e.g., mean and standard deviation) concerning the19

measured effect, especially for continuous response variables, and it must be determined whether20

the summary information is adequate for the BMD method to proceed.  21

Dichotomous data are normally reported at the individual level (e.g., 11/50 animals22

showed the effect).  Occasionally a dichotomous endpoint will be reported as being observed in a23

group with no mention of the number of animals showing the effect.  This usually occurs when24

the incidence of the endpoint reported is ancillary to the focus of the report.  For BMD modeling25

of dichotomous data, both the number showing the response and the total number of subjects in26

the group are necessary.27

Continuous data are reported as a measurement of the effect, such as body weights or28

enzyme activity in control and exposed groups.  The response might be reported in several29
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different ways, e.g., as an actual measurement, or as a contrast (absolute change from control or1

relative change from control).  To model continuous data when individual animal data are not2

available, the number of subjects, mean of the response variable, and a measure of variability3

(e.g., standard deviation, SD; standard error, SE; or variance) are needed for each group.   The4

lack of a numerically reported SD or SE precludes the calculation of the BMD.  In some cases, a5

measure of variability is presented for the control group only and this information can be used for6

modeling by making an assumption, for example, that the variance in the exposed groups is the7

same as the controls.  However, the modeling of data and calculation of the confidence limits8

will not be as precise as when the variance information is available for individual groups.9

Categorical data are defined as a type of quantal data in which there is more than one10

defined category in addition to the no-effect category and the responses in the treatment groups11

are characterized in terms of the severity of effect (e.g., mild, moderate, or severe histological12

change).  Results may be classified by reporting an entire treatment group in terms of category13

(group level reporting), or by reporting the number of animals from each group in each category14

(individual level reporting).  For example, a report of epithelial degenerative lesions might state15

that an exposed group showed a mild effect (group level) or that in the exposed group there were16

7 animals with a mild effect and 3 with no effect (individual level reporting).  In the latter case,17

the BMD can be calculated using a quantal model after combining data in severity categories18

(e.g., model all animals with a particular severity of effect or all with greater than a mild effect).  19

Dichotomous data can be viewed as a special case in which there is one effect category and the20

possible response is binary (e.g., effect or no effect).  Information may also be treated as21

categorical in cases where an endpoint is inherently a dichotomous or continuous variable, but22

because the endpoint is reported only descriptively, and the number affected and total number23

exposed are not reported, it cannot be treated quantitatively.  Modeling approaches have been24

discussed for categorical data with multiple categories  (Dourson et al., 1985; Hertzberg, 1989;25

Hertzberg and Miller, 1985) and for group level categorical data (Guth et al., 1997, Simpson et26

al., 1996a,b).  These regression models can also be used to derive a BMD, by estimating the27

probability of effects of different levels of severity. 28

29



16

2.  Selection of Studies to be Modeled1

Following a complete review of the toxicity data, the risk assessor must select the studies2

appropriate for benchmark dose analysis.  The selection of the appropriate studies is based on the3

human exposure situation being addressed, the quality of the studies, and the relevance and4

reporting adequacy of the endpoints. 5

The process of selecting studies for benchmark dose analysis is intended to identify those6

studies for which modeling is feasible, so that BMDLs can be calculated and used in dose-7

response assessment.  In most cases, the selection process will identify a single study or very few8

studies for which calculations are relevant; all studies considered relevant should be modeled. 9

Cases in which there are a number of studies, or studies with a number of endpoints reported may10

require a large number of BMD calculations.  In these cases, it may be possible to select a subset11

of endpoints as representative of the effects in the target organ or the study.  This selection can be12

made on the basis of sensitivity or severity, which may be more easily compared within a single13

study in the same target organ than across studies.14

3.  Selection of Endpoints to be Modeled.15

Once studies have been evaluated with regard to their appropriateness for BMD modeling,16

the selection of endpoints to model should focus on the dose-response relationships.  For example,17

differences in slope (at the BMR) among endpoints could affect the relative values of the BMDLs18

to the corresponding LOAELs/NOAELs.  Thus, selection of endpoints should not be limited to only19

the one with the lowest LOAEL.  In general, endpoints within a study that have been judged by the20

risk assessor to be appropriate and relevant to the exposure should be modeled if their LOAEL is up21

to 10-fold above the lowest LOAEL.  This will help ensure that no endpoints with the potential to22

have the lowest BMDL are excluded from the analysis on the basis of the value of the LOAEL or23

NOAEL.  Selected endpoints from different studies that are likely to be used in determination of the24

POD should all be modeled, especially if different uncertainty factors may be used for different25

studies and endpoints.  The selection of the most appropriate BMDs to use for determining the POD26

must be made by the risk assessor using scientific judgement and principles of risk assessment, as27

well as the results of the modeling process.28

29
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4.  Minimum Data Set for Calculating a BMD1

Once the critical endpoints have been selected, data sets are examined for the appropriateness2

of a BMD analysis.  The following constraints on data sets to use for BMD calculations should be3

applied:4
�

There must be at least a statistically or biologically significant dose-related trend in the5

selected endpoint.6
�

The data set should contain information relevant to dose-response for modeling.  A7

determination of the amount of information about the dose-response that is available need8

not be quantitative or technical.  For example, a data set in which all non-control doses have9

essentially the same response level provides limited information about the dose-response,10

since the complete range of response from background to maximum must occur somewhere11

below the lowest dose: the BMD may be just below the first dose, or orders of magnitude12

lower.  When this situation arises in quantal data, especially if the maximum response is less13

than 100%, it is tempting to use a model like the Weibull with no restrictions on the power14

parameter, because such models reach a plateau of less than 100% and most modeling15

programs do not include other models for quantal data that have this property.  This situation16

can result in seriously distorted BMDs, because the model predictions jump rapidly from17

background levels to the maximum level.  In principle, other models could be found that18

force the BMD to be anywhere between that extreme and the lowest administered dose.  Thus19

the BMD computed here depends solely on the model selected, and goodness of fit provides20

no help in selecting among the possibilities. (see the quantal data examples in the appendix21

for a worked example of this situation).  The sad reality in such situations is that the data22

provide little useful information about dose-response; the ideal solution is to collect further23

data in the dose-range missed by the studies in hand.24

When there is a jump between non-control doses between no response and maximal25

response, there is still limited information about dose-response, but the dose-spacing may26

ameliorate the situation, since the BMD is effectively bracketed between the two doses that27

determine the jump.28

29
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5.  Combining Data for a BMD Calculation1

Data sets that are statistically and biologically compatible may be combined prior to dose-2

response modeling, resulting in increased confidence, both statistical and biological, in the calculated3

BMD.  In addition, the use of combined data sets may encourage further studies if the additional data4

can affect the BMD estimate.  Allen et al. (1996) provided an example of a case where data on boron5

developmental effects could be combined for the BMD analysis.  The simplest approach to6

combining datasets is simply to treat the data as if they were all collected simultaneously.  If it is7

plausible that the multiple datasets represent a homogeneous picture of the dose-response (for8

example, the responses at doses common to two or more datasets are essentially the same, and9

statistically undifferentiable), then this is an appropriate approach.  More likely, there will be some10

variabilit y among datasets which will  require more elaborate modeling to include properly.  There11

is as yet too littl e practical as well  as theoretical experience with this situation to allow specific12

guidance in the matter, other than to say that statistically appropriate methods must be used and13

justified if data sets are combined for modeling.  An example of statistically accommodating14

variabilit y among studies is the model for categorical regression developed by Simpson, et al. (1996,15

a and b).16

17

B. Criteria for Selecting the Benchmark Response Level (BMR)18

19

At the time of this writing, the Agency is developing guidance for the selection of the20

appropriate response level, or BMR, for use with BMD modeling.  In the interim, this document will21

describe BMR selection as it has typically been done to date.22

The major aim of benchmark dose modeling is to model the dose-response data for an23

adverse effect in the observable range (i.e., across the range of doses for which toxicity studies have24

reasonable power to detect effects) and then select a “benchmark dose” at the low end of the25

observable range to use as a “point of departure” for deriving quantitative estimates below the range26

of observation and to use as a basis for comparison of effective doses corresponding to a common27

response level across chemicals or endpoints.  Because different study designs have different28

sensitivities to observe adverse effects (i.e., limits of detection), the low end of the observable range29
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will  correspond to different response levels for different study designs.  A 10% response level is1

conventionally used (at least for dichotomous endpoints) to define effective doses (i.e., ED10s and2

LED10s) for comparing potencies across chemicals or endpoints (e.g., for chemical rankings).  This3

response level is used for such comparisons because it is at the low end of the observable range for4

many common study designs, although for some designs the limit  of detection is above the 10% level5

and for others it is below.  For the POD, on the other hand, it is not criti cal that a common response6

level be used for all  chemicals or endpoints, and for the purposes of deriving quantitative estimates7

at doses below the observable range, it may be desirable to use response levels below 10%, if8

possible, in order to minimize the degree of low-dose extrapolation required.  Thus, while it is9

important to always report ED10s and LED10s for comparison purposes, the actual “benchmark dose”10

used as a POD may correspond to response levels below (or sometimes above) 10%, although for11

convenience standard levels of 1%, 5%, or 10% have typically been used rather than a floating level12

dependent on the actual limit of detection of the relevant study.13

For continuous data, there are various possibiliti es for selecting the BMR (see below);14

however, regardless of which of the options is used, it is recommended that the BMD (and BMDL)15

corresponding to a change in the mean response equal to one control standard deviation from the16

control mean always be presented for comparison purposes (see below, third bullet for continuous17

data).  This value would serve as a standardized basis for comparison, akin to the ED10 for18

dichotomous data.19

The following describes the criteria conventionally used currently for selecting the BMR.20

For quantal (dichotomous) data, the conventional approaches are fairly straight forward.  For21

continuous data, on the other hand, there is less historical precedence to draw upon, however some22

reasonable options are presented.  Once a BMR is selected and the dose-response data are modeled,23

the BMD is explicitl y determined.24

• Quantal data:25

• An excess risk of 10% has generally been the default BMR for quantal data. The 10%26

response is at or near the limit of sensitivity in most cancer bioassays and in some27

noncancer bioassays as well .28
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• If a study has greater than usual sensitivity, then a lower BMR can be used, although1

the ED10 and LED10 are always presented for comparison purposes.  For example,2

reproductive and developmental studies having nested study designs often have3

greater sensiti vity, and for such studies a BMR of 5% has typically been used.4

Similarly, epidemiology studies often have greater sensitivities and a BMR of 1% has5

typically been used for quantal human data.6

• Continuous data:7

• If there is a minimal level of change in the endpoint that is generally considered to8

be biologically significant (for example, a change in average adult body weight of9

10%, or the doubling of average level for some liver enzyme), then that amount of10

change can be used to define the BMR.  (The BMD [and BMDL] corresponding to11

a change in the mean response equal to one control standard deviation from the12

control mean should also be presented for comparison purposes [see third bullet].)13

• If individual data are available and a decision can be made about which individual14

levels can be reasonably considered adverse (perhaps based on a quantile of the15

control distribution, for example), then the data can be “dichotomized”  based on that16

cutoff  value, and the BMR can be set as above for quantal data.  (The BMD [and17

BMDL] corresponding to a change in the mean response equal to one control18

standard deviation from the control mean should also be presented for comparison19

purposes [see third bullet].)20

• In the absence of any other idea of what level of response to consider adverse, a21

change in the mean equal to one control standard deviation from the control mean22

(see Section II C2e) can be used. The control standard deviation can be computed23

including historical control data, but the control mean must be from data concurrent24

with the treatments being considered (Crump, 1995).  This gives an excess risk of25

approximately 10% for the proportion of individuals below the 2nd percentile or26

above the 98th percentile of controls for normally distributed effects. 27

28

29



21

1

C.  Modeling the Data2

3

1.  Introduction4

The goal of the mathematical modeling in benchmark dose computation is to fit a model to5

dose-response data that describes the data set, especially at the lower end of the observable dose-6

response range.  The fitting must be done in a way that allows the uncertainty associated with7

parameter estimates to be quantified and related to the estimate of the dose that would yield the8

benchmark response.  In practice, this procedure will involve first selecting a family or families of9

models for further consideration, based on characteristics of the data and experimental design, and10

fitting the models using one of a few established methods.  Subsequently, a lower bound on dose is11

calculated at the BMR.  This section is too brief to do more than introduce the topic of modeling.12

Some references for further reading are: Chapter 10 of Draper and Smith (1981), Gallant (1987),13

Bates and Watts (1988), McCullagh and Nelder (1989), Seber and Wild (1989), Ross (1990),14

Clayton and Hills (1993), Davidian and Giltinan (1995).15

Dose-response models are expressed as functions of dose, possibly covariates, and a set of16

constants, called parameters, that govern the details of the shape of the resulting curve.  They are17

fitted to a data set by finding values of the parameters that adjust the predictions of the model for18

observed values of dose and covariates to be close to the observed response.   Dose-response models19

for toxicology data are usually of the type called "nonlinear" in mathematical terminology.  In a20

linear model, the value the model predicts is a linear combination of the parameters.  For example,21

in a linear regression of a response y on dose, the predicted value is a linear combination of a and22

b, namely, .Note that, even a quadratic or other polynomial is a linear model, in23 a b dose× + ×1

this sense:  is a third degree polynomial (a cubic)24 y a b dose c dose d dose= + × + × + ×2 3

equation, but is still a linear combination of the parameters, a, b, c, and d.  In contrast, in a nonlinear25

model, for example the log-logistic with background,26

  the response is not a linear combination of the parameters (here, P0,27 [ ]p P
P

a b d o se
= +

−
+ − +0

01

1 e lo g ( )
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a, and b).  The distinction is important, because nonlinear models are usually more diff icult to fit to1

data, requiring more complicated calculations, and statistical inference is more typically approximate2

than with linear models.  Note that this definition of "linear" is in contrast to the way the term is used3

in reference to cancer dose-response assessment, in which the phrase "low-dose linear" refers to4

models in which  the linear coeff icient on dose is positive.5

At the present, although biological models may often be expressed as nonlinear models (e.g.,6

Michaelis-Menten curves), nonlinear models do not necessarily have a biological interpretation.7

Thus, criteria for final model selection will  be based solely on whether various models describe the8

data, conventions for the particular endpoint under consideration, and, sometimes, the desire to fit9

the same basic model form to multiple data sets.  Since it is preferable to use special purpose10

modeling software, EPA is in the process of developing software which includes several models and11

default processes as described in this document (http://www.epa.gov/ncea/bmds.htm).12

13

2.  Background for Model Selection14

This section provides some basic statistical background and guidance on how to go about15

choosing a model structure appropriate to the data being analyzed, selection of “equivalent”  models,16

and confidence limit calculation to derive the BMDL to use as the point of departure.17

 a. Selecting the Model18

The initial selection of a group of models to fit to the data is governed by the nature of the19

measurement that represents the endpoint of interest and the experimental design used to generate20

the data.  In addition, certain constraints on the models or their parameter values sometimes need to21

be observed, and may influence model selection.  Finally, it may be desirable to model multiple22

endpoints, at the same time.  The diversity of possible endpoints and shapes of their dose-responses23

for different agents precludes specifying a small  set of models to use for BMD computation.  This24

will  inevitably lead to the need for judgement and occasional ambiguity when selecting the final25

model and BMDL for dose-response assessment.  It is hoped that, as experience using benchmark26

dose methodology in dose-response assessment accumulates, it will  be possible to narrow the27

number of acceptable models.28

29
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i.  Type of endpoint1

The kind of measurement variable that represents the endpoint of interest is an important2

consideration in selecting mathematical models.  Commonly, such variables are either continuous,3

like liver weight or the activity of a given liver enzyme, or discrete, commonly dichotomous, like4

the presence or absence of abnormal liver status. However, other types are common in biological5

data; for example: ordered categorical, like a histology score that ranges from 1-normal to 5-6

extremely abnormal; counts, such as counts of deaths or the numbers of cases of illness per thousand7

person-years of exposure to a given exposure condition;  waiting time, such as the time it takes for8

an illness to appear after exposure, or age at death, or multiple endpoints (such as survival, weight,9

and malformations in a developmental toxicity study) considered jointly (see, references in section10

I.C.2).  It is beyond the scope of this document to consider all possible kinds of variables that might11

be encountered, so further discussion will concentrate on dichotomous and continuous variables.12

Dichotomous variables.  Data on dichotomous variables are commonly presented as a13

fraction or percent of individuals that exhibit the given condition at a given dose or exposure level.14

For such endpoints, normally we select probability density models like logistic, probit, Weibull, and15

so forth, whose predictions lie between zero and one for any possible dose, including zero.16

Continuous variables.  Data for continuous variables are often presented as means and17

standard deviations or standard errors, but may also be presented as a percent of control or some18

other standard.  From a modeling standpoint, the most desirable form for such data is by individual.19

Unlike the usual situation for dichotomous variables, summarization of continuous variables results20

in a loss of information about the distribution of those variables.21

The preferred approach to expressing the BMR will determine the approach to modeling22

continuous data.  Two broad categories of approach have been proposed: 1) to express the BMR as23

a particular change in the mean response, possibly as a fraction of the control mean, a fraction of the24

range of the response (when there is a clear maximum response),  a fraction of the standard deviation25

of the measurement from untreated individuals, or a level of the response that expert opinion holds26

is adverse; or 2) to decide on a level of the outcome to consider adverse, and treat the proportion of27

individuals with the adverse outcome much as one would a dichotomous variable.28

Typical models to use in the first situation include linear and polynomial models, and power29
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models or other nonlinear models such as Hill models.  In the second situation, one approach is to1

classify each individual as affected or not, and model the resulting variable as dichotomous.  2

An alternative is to use a so-called "hybrid" approach, such as that described by Gaylor and3

Slikker (1990), Kodell et al. (1995), and Crump (1995), which fits continuous models to continuous4

data, and, presuming a distribution of the data, calculates a BMD in terms of the fraction affected.5

Using this approach, the probability (risk) of an individual with an adverse level is estimated directly6

as a function of dose in four steps (Gaylor and Slikker,1990).  In the first step, the probability7

distribution among individuals of the continuous measure is established for the control group.  Often8

this distribution may be approximately log-normal, i.e., the logarithm of the values of the biological9

measure are normally distributed.  Since most biological effects do not assume negative values, the10

log-normal distribution satisfies this condition.  If high values are adverse, a large percentile (e.g.,11

99th percentile) of the distribution may be selected as a cutoff value for normal levels with larger12

values considered adverse.  Conversely, if low values are adverse, a small percentile (e.g., first13

percentile) may be selected to classify individuals with lower values as adverse.14

In the second step, a dose-response curve is fit to the data to establish how the average value15

changes as a function of dose.  In the third step, the variability of individuals about the average16

dose-respose curve is calculated.  Often this can be expressed simply by the standard deviation about17

the dose-response curve.  It is common for the standard deviation of biological measurements to be18

proportional to their average value, i.e., a constant coefficient of variation.  Again, this is a property19

of the log-normal distribution.  However, the coefficient of variation may change with dose which20

leads to a more complicated analysis of the data.  In this case, it is often useful to model the variance21

as proportional to the mean raised to a power.  This model includes the case where the coefficient22

of variation is constant, where the variance is proportional to the square of the mean, and the23

coefficient of variation is the square root of the constant of proportionality.24

From the average values estimated from the dose-response curve in step 2 and the variability25

of values about the curve estimated in step 3, it is possible in the 4th step to estimate the probability,26

for any dose, that an individual is in the adverse range established in the 1st step.  Hence, the BMD27

can be estimated for a specified BMR.  The BMDL can then be calculated for use as a POD for low28

dose risk assessment.29
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ii. Experimental design1

The aspects of experimental design that bear on model selection include the total number of2

dose groups used and possible clustering of experimental subjects.  The number of dose groups has3

a bearing on the number of parameters that can be estimated: the number of parameters that affect4

the overall shape of the dose-response curve generally cannot exceed the number of dose groups.5

Clustering of experimental subjects is actually more of an issue for methods of fitting the6

models than for choice of the model form itself.  The most common situation in which clustering7

occurs is in developmental toxicity experiments, in which the agent is applied to the mother, and8

individual offspring are examined for adverse effects.  Another example is for designs in which9

individuals yield multiple observations (repeated measures).  This can happen, for example, when10

each subject receives both treatment and control (common in studies with human subjects), or each11

subject is observed multiple times after treatment (e.g., neurotoxicity studies).  The issue in all of12

these examples is that individual observations cannot be taken as independent of each other.  Most13

methods used for fitting models rely heavily on the assumption that the data are independent, and14

special fitting methods need to be used for data sets that exhibit more complicated patterns of15

dependence (see, for example, Ryan 1992; Davidian and Giltinan, 1995).16

iii. Constraints and covariates17

An obvious constraint on models for dichotomous data has already been been discussed:18

probabilities are constrained to be positive numbers no greater than one.  However, biological reality19

may impose other constraints on models.  For example, most biological quantities are constrained20

to be positive, so models should be selected so that their predicted values, at least in the region of21

application, conform to that constraint.  In models in which dose is raised to a power which is a22

parameter to be estimated (such as a Weibull model), if that parameter is allowed to be less than 1.0,23

the slope of the dose-response curve becomes infinite at a dose of zero.  This often results in24

numerical problemss in calculating the confidence interval.  This is an undesirable situation, and the25

default is to constrain these parameters to be at least 1.0 (see Example 1).  26

In quantal models, often a background parameter quantifies the probability that the outcome27

being modeled can occur in the absence of exposure.  It may be tempting to reduce the number of28

parameters to be estimated by fixing the value of the background parameter to be zero. However,29
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only when it is clear that an outcome is impossible in the absence of the exposure is it permissible1

to fix the value of the background to zero.2

It is preferred that a so-called “ threshold”  term  not be included in the models used for3

BMD/C analysis because, while it is not an estimate of a biological threshold, it is easily confused4

with such because of confusing terminology, and because most data sets can be fit adequately5

without this parameter and the associated loss of a degree of freedom.   The software currently6

distributed by EPA does not currently include this parameter.  However, occasionally, it may happen7

that the increase in a response is so precipitous that including a threshold parameter facilit ates the8

dose-response modeling, and in such cases it is acceptable to include the parameter.9

It is sometimes desirable to include covariates on individuals when fitting dose-response10

models.  For example, li tter size has often been included as a covariate in modeling laboratory11

animal data in developmental toxicity studies.  Another example is in modeling epidemiology data,12

when certain covariates (e.g., age, parity) are included that are expected to affect the outcome and13

might be correlated with exposure.  In continuous models, if the covariate has an effect on the14

response, including it in a model may improve the precision of the overall  estimate by accounting15

for variation that would otherwise end up in the residual variance.  In any kind of model, any variable16

that is correlated (non-causally) with dose, and which affects outcome, would need to be included17

as a covariate. 18

b.  Model Fitting 19

The goal of the fitting process is to find values for all  the model parameters so that the20

resulting fitted model describes those data as well  as possible; this is termed "parameter estimation."21

In practice, this happens when the dose-group means predicted by the model come as close as22

possible to the data means.  One way to achieve this is to write down a function (the objective23

function) of all  the parameters and all  the data, with the property that the parameter values that24

correspond either to an overall  minimum (or, equivalently, an overall  maximum) of the function, or25

that result in function values of zero, give the desired model predictions. 26

The actual fitti ng process is carried out iteratively, and starts with an initial guess for the27

parameter values.  This guess is iteratively updated to produce a sequence of estimates that (usually)28

converge.  Many models will converge to the right estimates for most data sets from just about any29
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reasonable set of initial parameter values;  however, some models, and some data sets, may require1

multiple guesses at initial values before the model converges.  It also happens occasionally that the2

fitting procedure will converge to different estimates from different initial guesses.  Only one of3

these sets of estimates will be "best".  It is always good practice when fitting nonlinear models to try4

different initial values, just in case. 5

There are a few common ways to construct objective functions: the methods of nonlinear6

least squares, maximum likelihood, and generalized estimating equations (GEE).  The choice of7

objective function is determined in large part by the nature of the variability of the data around the8

fitted model.  The method of nonlinear least squares, where the objective function is the sum of the9

squared differences between the observed data values and the model-predicted values, is a common10

method for continuous variables when observations can be taken as independent.  A basic11

assumption of this method is that the variance of individual observations around the dose-group12

means is a constant across doses.  When this assumption is violated (commonly, when the variance13

of a continuous variable changes as a function of the mean, often proportional to the square of the14

mean, giving a constant coefficient of variation), a modification of the method may be used in which15

each term in the sum of squares is weighted by the reciprocal of an estimate of the variance at the16

corresponding dose. This method is especially appropriate when the data to be fitted can be supposed17

to be at least approximately normally distributed.18

Maximum likelihood is a general way of deriving an objective function when a reasonable19

supposition about the distribution of the data can be made.  Because estimates derived by maximum20

likelihood methods have good statistical properties, such as asymptotic normality, maximum21

likelihood is often a preferred form of estimation when that assumption is reasonably close to the22

truth.  An example of such a situation is the case of individual independently treated animals (e.g.,23

not clustered in litters) scored for a dichotomous response.  Here it is reasonable to suppose that the24

number of responding animals follows a binomial distribution with the probability of response25

expressed as a function of dose.  Continuous variables, especially means of several observations, are26

often normal (gaussian) or log-normal.   When variables are normally distributed with a constant27

variance, minimizing the sum of squares is equivalent to maximizing the likelihood, which explains28

in part why least squares methods are often used for continuous variables.  In developmental toxicity29
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data, the distribution of the number of animals with an adverse outcome is often taken to be1

approximately beta-binomial.  This particular likelihood is used to accommodate for the lack of2

independence among littermates.3

A third group of approaches to estimating parameters are the related quasi-likelihood method4

(McCullagh and Nelder, 1989) and the method of GEE (see Zeger and Liang, 1986), which require5

only that the mean, variance, and correlation structure of the data be specified.  GEE methods are6

similar to maximum likelihood estimation procedures in that they require an iterative solution,7

provide estimates of standard errors and correlations of the parameter estimates, and estimates are8

asymptotically normal.  Their use so far has primarily been to handle forms of lack of independence,9

as in litter data, and would be useful in any of a number of kinds of repeated measures designs, such10

as occur in clinical studies and repeated neurobehavioral testing. 11

c.  Assessing How Well the Model Describes the Data12

An important criterion is that the selected model should describe the data, especially in the13

region of the BMR.  Most fitting methods will provide a global goodness-of-fit measure, usually14

providing a P-value.  These measures quantify the degree to which the dose-group means that are15

predicted by the model differ from the actual dose-group means, relative to how much variation of16

the dose-group means one might expect.  Small P-values indicate that it would be unlikely to achieve17

a value of the goodness-of-fit statistic at least this extreme if the data were actually sampled from18

the model, and, consequently, the model is a poor fit to the data.  Since it is particularly important19

that the data be adequately modeled for BMD calculation, it is recommended that � =0.1 be used to20

compute the critical value for goodness of fit, instead of the more conventional values of 0.05 or21

0.01.  P-values cannot be compared from one model to another since they assume the different22

models are correct; they can only identify those models that are consistent with the experimental23

results.   When there are other covariates in the models, such as litter size, the idea is the same, just24

more complicated to calculate.  In this case, the range of doses and other covariates is broken up into25

cells, and the number of observations that fall into each cell is compared to that predicted by the26

model.27

It can happen that the model is never very far from the data points (so the P-value for the28

goodness-of-fit statistic is not too small), but is always on one side or the other of the dose-group29
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means.  Also, there could be a wide range in the response, and the model predicts the high responses1

well, but misses the low dose responses.  In such cases, the goodness-of-fit statistic might not be2

significant, but the fit should be treated with caution.  One way to detect such situations is with3

tables or plots of residuals: measures of the deviation of the response predicted by the model from4

the actual data.  If the residuals are scaled by an estimate of their standard deviation, then residuals5

that exceed 2.0 in absolute value warrant further examination of the model.6

Another way to detect the form of these deviations from fit is with graphical displays.  Plots7

should always supplement goodness-of-fit testing.  It is extremely helpful that plots that include data8

points also include a measure of dispersion of those data points, such as confidence limits.9

In certain cases, the typical models for a standard study design cannot be used with the10

observed data as, for example, when the data are not monotonic, or when the response rises abruptly11

after some lower doses that give only the background response.  In these cases, adjustments to the12

data (e.g., a log-transformation of dose) or the model (e.g., adjustments for unrelated deaths) may13

be necessary.  In the absence of a mechanistic understanding of the biological response to a toxic14

agent, data from exposures that give responses much more extreme than the BMR do not really tell15

us very much about the shape of the response in the region of the BMR.  Such exposures, however,16

may very well have a strong effect on the shape of the fitted model in the region of the BMD.  Thus,17

if lack of fit is due to characteristics of the dose-response data for high doses, the data may be18

adjusted by eliminating the high dose group.  The practice carries with it the loss of a degree of19

freedom, but may be useful in cases where the response plateaus or drops off  at high doses.  Since20

the focus of the BMD analysis is on the low dose and response region, eliminating high dose groups21

is reasonable.  Alternatively, an entirely different model could be fit.22

d.  Comparing Models23

It will often happen that several models provide an adequate fit to a given data set.  These24

models may be essentially unrelated to each other (for example a logistic model and a probit model25

often do about as well at fitting dichotomous data) or they may be related to each other in the sense26

that they are members of the same family that differ in which parameters are fixed at some default27

value.  For example, one can consider the log-logistic, the log-logistic with non-zero background,28

and the log-logistic with threshold and non-zero background to all be members of the same family29
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of models.  Goodness-of f it statistics are not designed to compare different models, so alternative1

approaches to selecting a model to use for BMDL computation need to be pursued.2

Generally, within a family of models, as additional parameters are introduced the fit will3

appear to improve.  This general behavior is due solely to the increase in the additional parameters.4

Likelihood ratio tests can be used to evaluate whether the improvement in fit afforded by estimating5

additional parameters is justified.  Such tests cannot be applied to compare models from different6

families, however.  Some statistics, notably Akaike's Information Criterion (AIC) (Akaike, 1973;7

Linhart and Zucchini, 1986; Stone,  1998; AIC is -2L + 2p, where L is the log-likelihood at the8

maximum likelihood estimates for the parameters, and p is the number of model degrees of freedom)9

can be used to compare models with different numbers of parameters using a similar fitting method10

(for example, least squares or a binomial maximum likelihood).  Although such methods are not11

exact, they can provide useful guidance in model selection. 12

When other data sets for similar endpoints exist, an external consideration can be applied.13

It may be possible to compare the result of BMDL computations across studies if all  the data were14

fit using the same form of model, presuming that a model can be found that describes all the data15

sets.  Another consideration is the existence of a conventional approach to fitting a kind of data.  In16

this case, communication with specialists in that type of  data is eased when a familiar model is used17

to fit the data.  Neither of these considerations should be seen as justification for using ill -fitting18

models.  Finally, it is generally considered preferable to use models with fewer parameters, when19

possible.20

e.  Using Confidence Limits to Get a BMDL21

Confidence limits express the uncertainty in a parameter estimate that is due to sampling22

and/or experimental error.  The interval between two confidence limits is called a confidence23

interval.  Confidence intervals can be two-sided, that is, localize their corresponding parameter on24

both sides, or one-sided, that is, localize their corresponding parameter on only one side.  It may be25

convenient to think of a one-sided confidence interval as one limit  of a two-sided interval goes to26

either infinity or minus infinity.  For example, a one-sided 95% confidence interval for a parameter27

would share a limit  with the two-sided 90% confidence interval for the parameter, and have plus or28

minus infinity (or, perhaps, 0, for a parameter such as the BMD that must be non-negative) as its29
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second limit .  Confidence limits bracket those values which, within a particular model family, are1

consistent with the data, but do not account for or assume any correspondence between the modeled2

animal data and the human population of concern.  The “confidence” or "coverage" associated with3

an interval indicates the percent of repeated intervals based on experiments of the same sort that are4

expected to include the parameter being estimated, for example, the BMD.  With rare but important5

exceptions, calculated confidence intervals are approximations, in the sense that the actual coverage6

of the interval usually diverges somewhat from the desired.  The choice of confidence level7

represents tradeoffs in data collection costs and the needed data precision. Just as 0.05 is a8

convenient (but not necessarily good for all  data) level for tests, 95% is a convenient choice for most9

limits and is the default value recommended in this guidance.10

A lower confidence limit  is placed on the BMD to obtain a dose (BMDL) that assures with11

high confidence (e.g., 95%) that the BMR is not exceeded.  This process rewards better experimental12

design and procedures that provide more precise estimates of the BMD, resulting in tighter13

confidence intervals and thus higher BMDLs.  Some procedures and examples for calculating14

BMDLs or BMCLs are given by Gaylor et al. (1998). 15

The method by which the confidence limit  is obtained is typically related to the manner in16

which the BMD is estimated from the model. When parameters are estimated using the method of17

maximum-likelihood, confidence intervals (CIs) may be based on the asymptotic distribution of the18

likelihood ratio or on the asymptotic distribution of the maximum likelihood estimates (MLEs).19

While both can give problems in ranges where the assumptions needed to use asymptotic theory20

begin to weaken (e.g., as sample sizes decrease), in general it is preferred to base CIs for parameters21

estimated by maximum likelihood on the asymptotic distribution of the likelihood ratio, owing to22

their tendency to give better coverage behavior (Crump and Howe, 1985).23

To compute a CI for a model parameter based on the distribution of the likelihood ratio, first24

compute the maximum likelihood estimate of all the parameters in the model.  Next, separate the25

model parameters into one parameter whose CI is being computed (call it � ) and all the other26

parameters.  Then find the value of �  such that, when the other parameters are adjusted to maximise27

the likelihood, the log-likelihood is reduced from that at the maximum likelihood estimates by28

exactly � 2
(1,1- � )/2, where � 2

(1,1- � ) represents the quantile of the � 2 distribution corresponding to 1 degree29
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of freedom and an upper tail probability of �  (see, for example, Crump and Howe, 1985; Venzon and1

Moolgavkar, 1988).  When the value of interest cannot be expressed as a model parameter, a similar,2

but more complicated, approach is used.3

Details for other approaches to CI computation specific to particular data types follow:4

Quantal Data.  For quantal data each individual is classified according to whether or not it5

exhibits a particular adverse effect, e.g., death or cancer.  Quantal data provide the simplest case for6

estimating BMDs.  Consider an experiment consisting of animals exposed to several doses of a7

substance, and suppose that the number of animals exhibiting a particular adverse effect is8

binomially distributed at each dose level.  After a suitable dose-response curve has been fit to the9

experimental data, the BMDL is defined as a lower confidence limit on the exposure level that10

corresponds to a specified excess risk (e.g., 10%) above background.  The exposure level itself is11

the effective dose, or the BMD10.  There are several ways to calculate a lower confidence limit.  One12

is to apply standard statistical theory (specifically, the delta method, see for example Gart et al.,13

1986) to approximate the variance of the estimated BMD.  This estimated variance can then be used14

as the basis for constructing a lower confidence limit on the BMD.  The logarithm of doses can be15

used to ensure a positive BMDL.  A second approach is to calculate an upper confidence limit on16

the excess proportion (risk) of animals possessing an adverse effect as a function of dose.  The17

BMDL is the dose where the upper confidence limit for the estimate of risk equals the specified level18

of risk, e.g., 10%, desired for the BMD (see e.g., Kimmel and Gaylor, 1988).19

Clustered Data: Reproductive and Developmental Effects    The issue of litter effects for20

reproductive and developmental experiments complicates the calculation of a confidence limit.  The21

pregnant mother is the experimental unit and statistical methods must account for the tendency of22

littermates to respond similarly.  Chen and Kodell (1989) and Williams (1975) have proposed23

methods based on the assumption that the number of affected individuals in a litter follows a24

beta-binomial distribution.  The probability of an affected individual increases with dose of a toxic25

agent.  To fit this model, maximum likelihood estimates can be obtained from the beta-binomial log26

likelihood (Chen and Kodell, 1989).27

One disadvantage of the beta-binomial distribution and other correlated binomial28

distributions is their computational complexity.  A second disadvantage is a lack of robustness if the29
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assumed distribution is incorrect.  Alternative analyses can be based on quasi-li kelihood, or more1

generally, generalized estimating equations.  Liang and Zeger (1986) and Liang (1986) describe a2

general approach for the analysis of correlated data.  This approach is referred to as Generalized3

Estimating Equations (GEE).  Ryan (1992) discusses the use of this approach for developmental4

toxicity.  The GEE approach requires specification of only the mean and variance functions of the5

data.  To estimate dispersion parameters, a separate equation is required.  A simple example is the6

moment estimates.  An important addition in the GEE method is the inclusion of an empirical7

variance “ fix-up”  that relaxes the distributional assumptions so that the model parameters and their8

variances will be estimated correctly, even if the variance function is misspecified.    There is still9

incentive to correctly specify the variance function since it improves statistical eff iciency (Liang and10

Zeger, 1986).11

Continuous Data  Different techniques for calculating a BMD are required for continuous12

measurements.  Examples of continuous endpoints are body weights, organ weights, and13

hematological and clinical chemistry measurements.  For such data measured on a continuum, there14

generally is no sharp demarcation between normal and adverse values.  In the absence of a clinical15

definition of an adverse level, a low or high percentile (e.g., the first and 99th percentile) could be16

used to define an abnormal observation.  For values that are normally distributed, these percentiles17

are estimated by the mean ± 2.33 standard deviations from the control animals.  Such extreme values18

might be considered adverse or, at least, undesirable and can be classified as abnormal.19

Crump (1995) shows the relationship between a change in the mean response, relative to the20

standard deviation, and the excess risk.  For example, if values beyond the 98th to 99th percentile of21

control animals are considered abnormal, a dose that causes a shift in the average of one standard22

deviation results in approximately an excess risk of 10% of the animals in the abnormal range.  This23

provides a very simple method for establishing a BMD associated with a risk of approximately 10%.24

A lower confidence limit on this BMD can be calculated using standard regression procedures.25

Multiple Outcomes  In addition to the clustering or litter effect, multivariate outcomes are26

often encountered.  This is particularly true of developmental and reproductive toxicity data because27

exposure to agents can affect many different stages in the reproductive process.  Once implantation28

has occurred, exposures to toxicants can result in early pregnancy loss, malformation, low fetal29
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weight, and/or subsequent developmental problems.  The BMD can be based on the risk of being1

abnormal.  Abnormality is defined as exhibiting any of several selected abberative endpoints.2

Several authors have discussed the development of dose-response models for multivariate data (Chen3

et al, 1991; Ryan et al., 1991; Catalano and Ryan, 1991; Ryan, 1992b; Catalano et al., 1993; Zhu4

et al., 1994; Krewski and Zhu, 1994, 1995).5

Thus, the BMDL is determined by 1) selecting an endpoint(s), 2) identifying a BMR (a6

predetermined level of change in response relative to controls), 3) establishing, by an appropriate7

estimation procedure, a model that fits the data adequately, and 4) calculating a confidence limit  at8

the BMR using the model and the same estimation procedure.9

At the time of this writing, commercial software is available that is designed specifically for10

carrying out steps 3) and 4) by maximum likelihood or GEE methods.  EPA has software for this11

purpose (using maximum likelihood methods) that is widely-available to all potential users.12

f.  Selecting the model to use for POD computation13

To summarize the preceeding sections, it is recommended that the following steps be14

followed to select the model(s) to use for computing the POD: 15

• Assess goodness-of-f it, using a value of � =0.1 to determine a criti cal value.16

• Further reject models that apparently do not adequately describe the relevant low-dose17

portion of the dose-response, examining residuals and graphs of model and data.18

• As the models remaining have met the default statistical criteria for adequacy and visually19

fit the data, any of them theoretically could be used for determining the BMDL.  The20

remaining criteria for selecting the BMDL are necessarily somewhat arbitrary, and are21

adopted as defaults.22

• If the BMDL estimates from the remaining models are within a factor of 3, then they are23

considered to show no appreciable model dependence and will be considered24

indistinguishable in the context of the precision of the methods.  Models are ranked based25

on the values of their Akaike Information Criterion (AIC), a measure of the deviance of the26

model fit adjusted for the degrees of freedom, and the model with the lowest AIC is used to27

calculate the BMDL.  If this is not unique, the simple average or geometric mean of the28

BMDLs with the lowest AIC is used.29



35

• If the BMDL estimates from the remaining models are not within a factor of 3, some model1

dependence of the estimate is assumed.  Since there is no clear remaining biological or2

statistical basis on which to choose among them, the lowest BMDL is selected as a3

reasonable conservative estimate.  If the lowest BMDL from the available models appears4

to be an outlier, compared to the other results (e.g., there are several other results, all  within5

a factor of 3), then additional analysis and discussion would be appropriate.  Additional6

analysis might include the use of additional models, the examination of the parameter values7

for the models used, or an evaluation of the BMDs to determine if the same pattern exists as8

for the BMDLs.  Discussion of the decision procedure should always be provided.9

• In some cases, relevant data for a given agent are not amenable to modeling and a mixture10

of BMDLs and NOAEL/LOAELs results.  When this occurs, and the most biologically11

relevant effect is from a study considered adequate but not amenable to modeling, the12

NOAEL should be used as the point of departure.13

14

D. Reporting Requirements15

16

Any computation of a BMD or BMDL should include the following elements: 17

18

• Study or Studies Selected for BMD Calculation(s)19

• Rationale for study selection20

• Rationale for endpoints (effects) 21

• List dose response data used22

• Dose-Response Model(s) Chosen for each Case 23

• Rationale24

• Estimation procedure (e.g., maximum likelihood, least squares, generalized25

estimating equations)26

• Estimates of model parameters with standard errors27

• Goodness-of f it test statistics28

• Standardized residuals (observed minus predicted response/standard deviation)29
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• Choice of BMR for Each Case 1

• Rationale2

• Procedure used if for continuous data3

• Computation of the BMD4

• List the BMD Value.5

• Calculation of the Lower Confidence Limit for the BMD (BMDL) for Each Case6

• Confidence limit procedure (e.g., li kelihood profile, delta method, bootstrap)7

• List BMDL Value(s)8

• Graphics for Each Case 9

• Plot of data points with error (standard deviation) bars10

• Plot of f itted dose-response 11

• Plot of confidence limits for the fitted curve (optional; if included, the narative12

should describe the methods used to compute them.)13

• Identify BMD and BMDL14

• BMDs and BMDLs for Default BMRs15

• For dichotomous data, the BMD and BMDL for an extra risk of 0.1016

• For continuous data, the BMD and BMDL corresponding to a change in the mean17

response equal to one control standard deviation from the control mean.18

19

E.  Decision Tree20

21

The following decision tree depicts the general progression of steps in a BMD calculation.22

A separate BMD calculation should be conducted for each endpoint/study combination that is a23

reasonable candidate for becoming the basis for a final quantitative risk estimate.  Unlike comparing24

NOAELs or LOAELs across endpoints or studies, the relative values of potential BMDs are not25

readily transparent until after the modeling has been completed.26

For each candidate endpoint/study combination:27

1.  Select the appropriate BMR based on the type of data (i.e., quantal vs. continuous),28

sensitivity of study design, toxicity endpoint, and judgements about the adversity of the29
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endpoint if continuous (see Section II.B).1

2.  Model the dose-response data, using appropriate model structures for the type of data (i.e.,2

quantal vs. continuous, depending on how the BMR is defined) and study design (e.g.,3

nested) (see Section II.C.2.a).  For modeling cancer bioassay data, a specific default4

algorithm is generally used except for case-specific situations in which an alternate model5

may be superior (e.g. a time-to-tumor model, a biologically-based model).  For other types6

of experimental animal data, curve-fitting can be attempted with any appropriate models.7

Human data are modeled in a case-specific way which may need to account for covariates,8

competing causes of mortality, etc.9

3.  Assess the fit of the models (see Section II.C.2.c).  Retain models that are not rejected10

using a p-value of 0.1.  Examine the residuals and plot the data and models;  check that the11

models adequately describe the data, especially in the region of the BMR.  (Sometimes it12

may be necessary to transform the data in some way or to drop the highest exposure group(s)13

(e.g., if the behavior at high exposures can be attributed to early mortality or enzyme14

saturation effects) and repeat the modeling in order to get a good fit.)   15

4.  Calculate 95% lower confidence limits on the candidate BMDs (i.e., BMDLs) using the16

models which adequately fit the data (see Section II.C.2.e).17

5.  Select from among the models which adequately fit the data (see Section II.C.2.f).  If the18

BMDL estimates from these remaining models are within a factor of 3 they are considered19

indistinguishable, and the model with the lowest AIC can be selected to provide the BMDL.20

If the BMDL estimates are not within a factor of 3, some model dependence is assumed, and21

the model with the lowest BMDL estimate should be selected unless it appears to be an22

outlier, in which case further analysis may be appropriate.23

6.  Document the BMD analysis as outlined in Section II.D. on reporting requirements.24
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EXAMPLES1

2

3

1.  Introduction4

5

The following examples were selected to ill ustrate some important aspects of computing6

BMDs and BMDLs for single data sets and single endpoints.  Of course, other decisions, not7

ill ustrated here with examples, need to be made before a POD is determined, in particular which8

endpoints and data sets to model, and how to select a POD from among several BMDLs.  9

10

2.  Quantal Data: Selecting a Model11

12

This example ill ustrates computing a benchmark dose for a simple quantal data set, using the13

dose-response models available in BMDS. The main point is to ill ustrate selecting a benchmark14

dose, given that the criti cal data set and benchmark response level have already been selected.  In15

addition, it provides some background into why, in four commonly used  models for quantal data,16

available in EPA’s BMDS package (Weibull , log-logistic, log-probit, and gamma), a parameter17

(“power” or “slope”) is often constrained to be no less than 1.0.18

Consider the following dose-response data:19

20

Dose21 Number Affected Fraction Affected Number of Animals

022 1 0.02 50

2123 15 0.31 49

6024 20 0.44 45

25

We want to compute a benchmark dose and BMDL for an extra risk of 0.10 (as suggested26

by this document), using a one-sided 95% confidence interval.  If we define the BMD to correspond27

to an extra risk of 0.10 (= BMR), then, if P(BMD) is the proportion of affected animals at the BMD,28
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and P(0) is the proportion in the control group, BMR is defined to be .  This1 B M R
P B M D P

P
=

−
−

( ) ( )

( )

0

1 0

can be rearranged to yield ).Since we are looking for a BMR of2 [ ]P B M D P P B M R( ) ( ) ( )= + −0 1 0

0.10, that will  correspond to a response of 0.02 + (0.98 *  0.1) = 0.118.  Notice that 31% of the tested3

animals were affected in the lowest non-control dose.  4

Thus the expected response at the BMD is substantially lower than the lowest observed5

response.  We need to be aware that model choice will have some effect on the BMD calculation.6

First, we fit a number of models to the data.7

Results of fitting the models, sorted in order of increasing AIC [ = -2 × (LL - p), where LL8

is the log-likelihood at the maximum likelihood estimates, and p is the degrees of freedom of the9

model; generally everything else being equal, lower AIC values are preferred]:10

11

Model12 � 2 P-value AIC BMD BMDL

log-logistic (slope �  1)13 0.93 0.34 136.907 7.21 4.93

log-probit (unconstrained)14 0 NA1 137.995 2.75 NA

Weibull (unconstrained)15 0 NA 137.995 1.71 NA

log-logistic (unconstrained)16 0 NA 137.995 2.25 NA

gamma (unconstrained)17 0 NA 137.995 1.33 � 0

Multistage (degree=2)18 2.27 0.13 138.17 9.29 6.92

gamma (power  �  1)19 2.27 0.13 138.17 9.29 6.92

Weibull (power � 1)20 2.27 0.13 138.17 9.29 6.92

log-probit (slope �  1)21 6.05 0.0139 141.692 14.82 11.53

probit22 7.83 0.0051 144.448 19.50 15.71

logistic23 8.30 0.004 145.179 20.95 16.78

1 Degrees of freedom are 0, since there are three dose groups and three estimated parameters.24

Eight of the models have chi-squared values that exceed the recommended cutoff P-value of25

0.1 (this includes four models with perfect fits, even though their P-values are undefined because26
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there are no degrees of freedom left to test the chi-square statistic).  The model with the best AIC is1

the log-logistic model with slope parameter constrained to be no less than 1.  For this model, the2

standardized residuals [i.e.,( observed value - expected value)/standard error] are all small:3

     Dose     Est._Prob.    Expected    Observed     Size       Residual4
  ------------------------------------------------------------------------5
    0.0000      0.0218          1.091          1           50      -0.08816
   21.0000      0.2609         12.784         15           49       0.72087
   60.0000      0.4917         22.125         20           45      -0.63358

9

and a visual examination seems OK, since the predicted curve comes well within the confidence10

limits for each data point:11
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Figure A-2.1 Example data with 95% confidence limits,
and constrained log-logistic model fit.

Four other models have only slightly greater AIC values and perfectly fit the data, the models13

with unconstrained slope or power parameters.  Their AIC values are greater than that for the14

constrained log logistic only because an extra parameter counts against them: BMDS does not15

assign a model degree of freedom to parameters that end up on a constraint, so that model has16

only 2 degrees of freedom, while the models with unconstrained parameters have 3.  The BMDs17

computed from the unconstrained models differ slightly among themselves, but are all quite a bit18

smaller than that computed from the constrained log-logistic, and, finally, there seems to be a19

problem with computing a BMDL for those models.  Nevertheless, these models also describe20
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the data quite well, as the following graph of the unconstrained log-logistic model fit attests:1

2

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

F
ra

ct
io

n 
A

ffe
ct

ed

dose

Log-Logistic Model

16:37 09/08 2000

Log-Logistic

Figure A-2.2 Example data, 95% confidence limits, and
unconstrained log-logistic model fit.

4

The main difference between the two log-logistic curves is in the region between the control and5

the lowest dose, where the unconstrained model curves upward more sharply than does the6

constrained model, which accounts for the lower BMDs from these models.7

Finally, three models, the second-degree multistage, constrained Weibull, and constrained8

gamma, all give exactly the same fit and BMD prediction: in fact, for these data, they are really9

the same model.  While the P-value for the fit is approaching the recommended cutoff, the AIC is10

only slightly worse than that for the unconstrained models.  The predicted values and residuals11

are summarized in the table below: 12

                                                                Scaled13
     Dose     Est._Prob.    Expected    Observed     Size       Residual14
  ------------------------------------------------------------------------15
    0.0000      0.0251          1.257          1           50       -0.23216
   21.0000      0.2318         11.356         15           49        1.23417
   60.0000      0.5064         22.787         20           45       -0.83118

19

The fit at the lower two doses is a little worse than it was for the constrained log-logistic,20
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and this is apparent with close inspection of the graph, shown in Figure A-2.3.1
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Figure A-2.3 Example data with 95% confidence limits,
and second degree multistage model fit.

The primary question to be addressed here is, “Which model should I use to compute the3

BMD and BMDL”.  In this case, since the AIC of the constrained log-logistic model is slightly4

below those for the other models, the constrained log-logistic model can be considered preferable5

to them. However, the three lowest AIC values in the table above are so similar that it might be6

tempting to consider the models with the perfect fit to the data, even though this guidance7

recommends against using models such as the Weibull or log-logistic without constraining the8

power parameter or the slope parameter to be no less than 1.0.  The rest of the narrative of this9

example is devoted to showing why allowing the slope parameter to be less than 1.0 might not be10

such a good idea.11

The answer centers on the interpretation of BMDLs and how they are computed.  When12

BMDLs are computed using the profile li kelihood approach, this is particularly easy to visualize. 13

In this case, conceptually at least, the BMD is treated as a parameter in the dose-response model,14

and, for each in a range of BMD values, the other parameters in the model are adjusted to15

maximize the log-likelihood while keeping the BMD constant at the selected value.  The16

resulting curve, plotting the log-likelihood as a function of BMD value, is called a profile17

likelihood.  This curve has a maximum at the BMD that corresponds to the maximum likelihood18

estimates for all the parameters, and drops off f or values above and below that point.  The BMDL19



58

for a (1 - � ) × 100% confidence interval is the BMD value where the log-likelihood is reduced1

from the maximum value by ( � 2
1df, 2� )/2.  Since we compute one-sided confidence intervals, we2

need only consider the shape of the curve below the maximum likelihood estimate for the BMD. 3

The upper left hand panel of Figure A-2.4 shows this half of the profile li kelihood for the BMD4

for the constrained log-logistic model fitted to the example data.  The horizontal li ne indicates5

the criti cal value of the log-likelihood for determining a 95% confidence limit .6

Since each BMD value on the x-axis of the figure has corresponding model parameter7

estimates, we can examine the plausibilit y of the dose-response curves we are claiming are8

consistent with the data.  The upper right panel of Figure A-2.4 shows this for some BMD values9

including the maximum likelihood estimate (lowest dose-response curve) and the lower10

confidence limit (highest dose-response curve).  Although clearly the range of curves does not11

exhaust the set of plausible dose-response curves one might consider for these data, they are12

certainly all plausible shapes.  So, not only does the maximum likelihood fit of the model to the13

data represent a plausible dose-response shape, so do all the models between that and the model14

implied by the lower confidence bound on the BMD.15

The story is different for the unconstrained log-logistic model, ill ustrated in the lower two16

panels of Figure A-2.4.  First of all , the profile li kelihood is substantially flatter for this model.  It17

never even achieves the necessary drop in log-likelihood for there to be a lower 95% confidence18

limit , indicated by the horizontal li ne (the lowest, left-most point on the curve is the limiti ng19

value as BMD approaches 0).  This explains why there is no BMDL for this model in the table:20

the confidence limit i ncludes 0!  The lower right panel shows the dose-response curves that21

correspond to the BMD values indicated by X’s in the lower left panel.  While the maximum22

likelihood fit may be a plausible fit to the data, the curves become increasing implausible as23

BMD drops, with the curve shooting up more and more rapidly from the control response as the24

BMD for the model is reduced.   The log-likelihood is never reduced very much, because there is25

littl e evidence for trend in the responses at the two non-control doses.  Indeed, at the limiti ng26

value for the BMD, 0, the curve is discontinuous: the control is fit perfectly, and the non-control27

responses are fit by a horizontal li ne, and the log-likelihood is not reduced suff iciently to reject28

this model as a plausible fit to the data!  This situation often occurs when models such as the log-29
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logistic (also log-probit) are fit without constraining the slope parameter, and the Weibull,1

gamma, Hill, or power models are fit without constraining the power parameter.  The2

implausibility of the curves that sometimes result when such models are fit to data is why this3

document recommends that such models not be used with unconstrained power or slope4

parameters, or only with great care.5

In conclusion, for the reasons stated above, the log-logistic model, with the slope6

constrained to be greater than one, is selected as the preferred model for these data.  This gives a7

BMD of 7.2 and BMDL of 4.9 for an extra risk of 10% for this dataset.8
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1

Figure A-2.4 Profile li kelihoods (left) and corresponding dose-response curves (right) for log-
logistic models fit to the example data set.  The top two figures correspond to models with slope
constrained to be no less than 1.0; the bottom two figures correspond to models with slope
constrained to be positive.  “Xs” on the profile li kelihoods correspond t the plotted dose response
curves.  Vertical li nes on the dose-response graphs indicate 95% confidence limits for the data
means.  The horizontal li nes in the profile li kelihood plots correspond to the likelihood value that
defines the 95% confidence limit for the BMD.
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1

3. Continuous Data: Getting a Good-Fitting Model2

3

This example ill ustrates some of the care required when using non-linear modeling4

software and some of the data manipulation that may be required to get an adequate model fit for5

computing a BMD and BMDL.  Several points are being made here: (1) convergence of a6

nonlinear model does not guarantee that maximum likelihood estimates have been achieved;7

sometimes some common sense and refitting is required to get MLEs; (2) even once maximum8

likelihood estimates have been achieved, the model may not fit well enough, and other actions9

may need to be taken to get a better fitting model; (3) one of the BMRs for this example is 5% of10

the dynamic range of the response (Murrell et al., 1998, suggest that the fraction of the dynamic11

range of a continuous variable may often be a good quantification of the biological significance12

of the change); sometimes it may require some common sense and ingenuity to compute the13

BMD corresponding to such a BMR.  NOTE: Some of the behavior of this example depends on14

the way the April 3, 2000 version of the Hill model from BMDS, selects its initial values. Other15

software, and even later versions of the Hill model from BMDS, may well behave differently on16

these data.  This does not indicate “bugs” in the software, but rather that, for some datasets, there17

can be multiple “local maxima” for the likelihood function; software that uses purely local18

methods for optimization (as does BMDS) can get trapped at a local maximum, and may require19

experimenting with alternative initial parameter values to assure convergence to a true global20

maximum of the likelihood function.  Software packages differ in the algorithm used to select the21

starting parameter values for optimization, so may end up in different local maxima.22

For this example, consider the following data set:23

Dose24 subject/group Mean Std. Dev.

0.25 8 100. 30.4

0.326 8 98.24 49.8

1.27 8 111.34 59.9

3.28 8 172.16 58.4

10.29 8 357.48 167.5
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30.1 8 1695.03 260.9

100.2 8 1576.11 169.7

300.3 8 1896.22 141.7

4

The data represent a biochemical response in rats after dosing.  For this example, we will5

compute a BMD as the dose where the response has increased over background by an amount of6

5% of the range between the background and the maximum response, per the suggestion of7

Murrell, et al. (1998), as well as the dose where the mean has been displaced by one control8

standard deviation, as this document suggests.  As can be seen from Figure A-3.1, the dose-9

response is clearly sigmoidal.10
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Figure A-3.1: Mean and 95% confidence intervals for
example data.

It is natural in such data to fit a flexible model that allows a sigmoidal response; the Hill12

model is one such model, available in BMDS.  Since it is usual in biochemical data for the13

variance to be proportional to the square of the mean (approximately), and since it looks as if the14

variance is larger in this data set for larger means, in general, for this example, we fit a model to15

the data in which the variance is modeled as being proportional to the power of the mean.  That16

is, our model is:17

18
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1
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where d represents dose, � (d) represents the mean response, and � 2(d) represents the variance of3

the observations at dose d.  Rough estimates of this model can be read off the graph of the data,4

and this provides a useful check of the fitting algorithm.  When we fit a Hill model to the5

example data, we would expect �  (intercept) to be around 100, since that is about the background6

level of the response, V should be around 1600, since that is about the increment at the highest7

doses over the background level.  k represents the dose where half the response has occurred, and8

should be in the range of 10 – 30.  Furthermore, based on experience, n should be relatively9

small , say between 1 and 10, and �  ought to fall between 1 and 2, or so, since it is common for10

variances to be proportional to the square of means in such data.11

 If that model is fit to these data using the April 3, 2000 version of the Hill model from12

BMDS (the current version as of this writing), the fitting algorithm apparently converges on a13

solution.  The parameter estimates from this solution are:14

15

       Variable           Estimate             Std. Err. 16
          alpha             4381.57             2211.6717
            rho            0.266572           0.066897918
      intercept             105.045             22.875919
              v             1634.05              51.08720
              n             4.76591             1.6214521
              k              14.256             1.8032422

Note that all the estimates are in their expected ranges except for the estimate of �  (rho), which is23

0.27, though we said we would have expected a value in the range 1-2.24

25
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The resulting predicted values are:1

2

 Dose       N    Obs Mean    Obs Std Dev   Est Mean   Est Std Dev   Chi^2 Res.3
------     ---   --------    -----------   --------   -----------   ----------4

5
    0     8        100         30.4          105          123         -0.1156
  0.3     8       98.2         49.8          105          123         -0.1567
    1     8        111         59.9          105          123          0.1388
    3     8        172         58.4          106          123          1.5189
   10     8        357          168          360          145         -0.05910
   30     8   1.7e+003          261    1.69e+003          178          0.02811
  100     8  1.58e+003          170    1.74e+003          179         -2.57012
  300     8   1.9e+003          142    1.74e+003          179          2.48313

14

While the model predicts the mean values and the standard deviations at the higher doses15

pretty well, the standard deviations at the lower doses are overestimated by factors of 2 to 4. For16

future reference, the log-likelihood for this model fit is -345.786.17

This may be the best this model can do, but it looks suspiciously like the fitting algorithm18

got caught in a local maximum of the likelihood surface, and that, perhaps, if we could get better19

initial values for some of the parameters, we could get a better set of estimates.  Since the model20

for the mean seems to describe the data pretty well, we will restart the model, selecting the old21

estimates as initial values for the parameters of the model for the mean, and get new starting22

values for estimating the variance function parameters. These new estimates will come from23

regressing the log of the observed variance (that is, the square of the standard deviation), on the24

log of the observed mean (that is, ).  The parameter25 log ( ) log ( ) log ( )var m ean= +α ρ

estimates from this regression are: � =1.0, log( � )=3.166, so the estimate of �  is e3.166 = 23.7. 26

Starting from these new values, the final estimates are:27

       Variable           Estimate             Std. Err. 28
          alpha             24.8892             24.575529
            rho             1.04671            0.16214230
      intercept             117.097              10.79831
              v              1629.2             64.920932
              n             4.18855             1.3338633
              k             14.8385             1.8645334
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and the new predicted values:1

 Dose       N    Obs Mean    Obs Std Dev   Est Mean   Est Std Dev   Chi^2 Res.2

------     ---   --------    -----------   --------   -----------   ----------3
4

    0     8        100         30.4          117         60.3         -0.7975
  0.3     8       98.2         49.8          117         60.3         -0.8826
    1     8        111         59.9          117         60.3         -0.2817
    3     8        172         58.4          119         60.9          2.4628
   10     8        357          168          379          112         -0.5569
   30     8   1.7e+003          261    1.67e+003          242          0.35110
  100     8  1.58e+003          170    1.75e+003          248         -1.93911
  300     8   1.9e+003          142    1.75e+003          248          1.71112

13
             BMD =        7.346714

15
            BMDL =       5.9673316

17

The log-likelihood for this fit is -333.127, a substantial improvement over the previous18

fit.  Furthermore, now not only do the estimated means accord with those observed, but the19

estimated standard deviations are a lot closer to those observed.  Most likely, the current20

estimates are really the maximum likelihood estimates for this model and this dataset.21

However, even though the fit is improved, neither the variance model (see the result of22

Test 3, below) nor the model for the mean (result of Test 4, below) fits the data, as the following23

excerpt from BMDS output for this example illustrates:24

25

                       Likelihoods of Interest26
27

            Model      Log(likelihood)   DF        AIC28
             A1            -343.706       9        705.41229
             A2             -317.77      16        667.53930
             A3            -324.533      10        669.06531
           fitted          -333.127       6        678.25332
              R            -458.043       2        920.08633

34
35

                   Explanation of Tests  36
37
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 Test 1:  Does response and/or variances differ among Dose levels? 1
          (A2 vs. R)2
 Test 2:  Are Variances Homogeneous? (A1 vs A2)3
 Test 3:  Are variances adequately modeled? (A2 vs. A3)4
 Test 4:  Does the Model for the Mean Fit? (A3 vs. fitted)5

6
                     Tests of Interest    7

8
   Test    -2*log(Likelihood Ratio)  Test df        p-value    9

10
   Test 1              280.547         14          <.000111
   Test 2              51.8732          7          <.000112
   Test 3              13.5263          6          0.035413
   Test 4              17.1876          4        0.00177714

15

What is going on?  The table of f itted values, above (particularly the column labeled16

“chi^2 residuals”) shows that the current model seriously underpredicts the response at a dose of17

3, and misses the response at the two highest doses on either side.  Furthermore, the model over18

predicts the standard deviation at the two highest doses (which is probably why the model for the19

variance is rejected).  It is the under prediction at the lower doses that is most important,20

however, because that is in the region of the BMD, as far as this model can tell . 21

The three highest doses, at 30, 100 and 300, are quite far from the BMD; if we drop those22

doses, we will be eliminating doses whose responses the model cannot account for very well ,23

and, since they are far from the BMD, we should not be eliminating much information about the24

actual location of the BMD.  Furthermore, since the responses on the plateau have all been25

dropped, other monotonic dose-response models can be fit to the data.  We consider three here:26

the Hill , a first degree polynomial (adding higher degree terms to the model did not add27

significantly to the abilit y of the model’s abilit y to fit the data; the model used is28

), and the power model ( ).29 ( )µ β βd d= +0 1 ( )µ β β γd d= +0 1

However, one of the BMRs we want to calculate is based on a change in the mean30

response equal to 5% of the range of the response (that is 5% of the maximum value minus the31

minimum value).  In the Hill model, the BMD and BMDL corresponding to this change can be32

computed directly by the software in BMDS, but this is not so for the other models (since those33
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models to not allow for a horizontal asymptote).   Furthermore, since this reduced data set really1

contains no information about the maximum response, even the Hill model’s estimate of that is2

suspect (the estimate of the maximum value from the model reported in the above table is3

ridiculously large: 143289;  with a huge standard error: 5.8 × 108, so it is clearly not useful for4

setting a BMR).  The way around this is to calculate 5% of the observed dynamic range for this5

endpoint, and look for the dose that would result in an absolute change of this amount.  The6

minimum value, based on the variance-weighted mean of the lower two dose groups, is 99.51,7

and the maximum value, based on the variance-weighted mean of the upper three dose groups, is8

1758.3; 5% of the difference of the two is 82.9.9

10

11 5% Dyn. Range 1 SD Change

Model12 GOF P-value AIC BMD BMDL BMD BMDL

polynomial13 0.98 375.46 3.23 2.46 1.46 1.11

power14 0.95 377.35 3.46 2.47 1.66 1.11

Hill15 0.76 379.35 3.46 2.47 1.70 1.14

16

All three models fit the data well , according to both the summary results reported here and a17

more detailed examination of the graphs and residuals (not shown here), but the AIC for the18

polynomial model is somewhat better than that for the other two, so that is the model to choose19

to calculate the BMD and BMDL.  That is, the BMD and BMDL based on 5% of the dynamic20

range of the response are 3.23 and 2.46; based on a one standard deviation change, 1.46 and 1.11.21

This example ill ustrates three points, none of which is specific to modeling continuous22

data: (1) it is important to exercise some judgment when fitting models to data; no software23

package can guarantee that the parameters returned are actually maximum likelihood estimates,24

and the analyst may have to do some “tweaking” to get an acceptable answer; (2) we want25

models that describe the data well i n the region of the BMR/BMD, which may involve some26

judicious narrowing of the dose range we attempt to model; (3) it may be necessary to exercise27

some creativity to compute BMDs for the BMR we want, and what scientific and risk analytic28

judgment dictate as desirable answer should not be subservient to what the software can do.29
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1

4. Cancer Bioassay Data: Modeling POD for Cancer Slope Factor2

For cancer response modeling from standard cancer bioassay data, U.S. EPA is3

developing a specific algorithm which will be included in the BMDS package.  The algorithm4

uses a multistage (polynomial) model with some constraints.  As this model is under5

development at the time of this writing, the standard BMDS version of the multistage model will6

be used for the purposes of this example.  Under EPA’s proposed 1996 Guidelines for7

Carcinogen Risk Assessment, quantitative risk estimates from cancer bioassay data are typically8

calculated by modeling the data in the observed range to estimate a BMDL for a BMR of 10%9

extra risk, which is generally at the low end of the observable range for standard cancer bioassay10

data.  This BMDL then serves as the “point of departure” for linear extrapolation or a nonlinear11

quantitative approach, as warranted by the mode of action of the carcinogen. 12

This example uses the dose-response data presented in EPA’s 1988 Health and13

Environmental Effects Document for Dibromochloromethane for the quantitative estimate of14

carcinogenic risk from oral exposure.  The rationale for study selection and endpoint selection,15

while important components of any comprehensive write-up of a BMD calculation, are beyond16

the scope of this quantitative example.17

18

BMD Modeling for Dibromochloromethane19

20

tumor type:  hepatocellular adenoma or carcinoma21

test animal: B6C3F1 mouse, female22

route of exposure: gavage23

study: NTP, 198524

25

26
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DOSE-RESPONSE DATA1

2

administered human equivalent tumor3

dose (mg/kg/day) dose (mg/kg/day) incidence4

5

0 0     6/506

          50        2.83   10/497

        100        5.67   19/508

9

As discussed above, the multistage model was used because it is considered the default model for10

cancer bioassay data; although, in the future there will be a specific algorithm for modeling such11

cancer data.  Similarly, a BMR of 10% extra risk was used, as is typical for standard cancer12

bioassay data.13

14

BMR:  10%15

model:  multistage, extra risk16

17

First, a second-degree (i.e., n-1) multistage model is fit to the data.18

19

model form:  background + (1-background) * [1-EXP(-beta1*dose^1-beta2*dose^2)]20

21

parameter estimate (MLEs) std.error22

background 0.12 0.13266523

beta (1) 0.00930036 0.14189824

beta (2) 0.00925286 0.024690425

26

AIC = 158.68827

p-value = 128

Chi2 = 029

residuals = 030



70

Figure A-4.1 Second-degree multistage model.

BMD (ED10) = 2.91 mg/kg/day1

2

BMDL (LED10; 95% confidence limit estimated by likelihood profile) = 1.25 mg/kg/day3

4

5

6

7

The second-degree model provides a good fit.  Next, a first-degree multistage model is fit to the8

data to see if a more parsimonious model can also provide an adequate fit. 9

10

model form:  background + (1-background) * [1-EXP(-beta1*dose^1)]11

12

parameter estimate (MLEs) std.error13

background 0.111488 0.12055614

beta (1) 0.0559807 0.039149215
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AIC = 157.2721

p-value = 0.44462

3

Goodness  of  Fit:    4

5

Dose       Est. Prob.    Expected    Observed     Size     Chi^2 Residuals6

0.0000     0.1115         5.574          6               50        0.0867

2.8300     0.2417        11.842        10               49       -0.2058

5.6700     0.3531        17.657        19            50        0.1189

10

Chi-square =  0.57        DF = 1        P-value = 0.449411

12

BMD (ED10) = 1.88 mg/kg/day13

14

BMDL (LED10; 95% confidence limit estimated by likelihood profile) = 1.20 mg/kg/day15

16

17

Figure A-4.2 First-degree multistage model.
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The AIC is lower for the first-degree model suggesting that this is the preferred model; however,1

because the multistage model is really a family of k-degree models, a likelihood ratio test can be2

used to evaluate whether the improvement in fit afforded by estimating additional parameters is3

justified.  In this case, the log likelihood for the second-degree model was -76.3439 and for the4

first-degree model was -76.6361.  Thus twice the absolute difference in the log likelihoods is less5

than 3.84, i.e., a Chi-square with one degree of freedom (i.e., 2-1), suggesting that the first-6

degree multistage model is not significantly different from the second-degree model.  Under the7

recommendations of the benchmark dose guidance, the more parsimonious first-degree model8

would be generally preferred.  Final judgement on this may be subject to endpoint-specific9

guidance.   10

11

References12

13

NTP (National Toxicology Program).  1985.  Toxicology and carcinogenesis 14

  studies of chlorodibromomethane (CAS No. 124-48-1) in F344/N rats and B6C3F1 15

  mice (gavage studies).  NTP Tech. Report Series No. 282.  NTIS PB 86-166675.16

17

U.S. EPA.  1988.  Health and Environmental Effects Document for 18

  Dibromochloromethane.  Prepared by the Office of Health and Environmental 19

  Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH.  ECAO-CIN-20

  GO40.21

22

23
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1

5. Developmental Toxicity Example2

3

In general, data from developmental toxicity studies in rodents are best modeled using4

nested models.  These models account for any intralitter correlation, or the tendency of5

littermates to respond similarly to one another relative to the other litters in a dose group.  If this6

correlation (which may vary with dose) is not estimated, variance estimates, and hence the7

confidence limits on benchmark responses and doses, will generally be misspecified.8

This example uses dose-response data reported by George et al. (1992), regarding the9

developmental toxicity of ethylene glycol diethyl ether administered orally to mice.  As with the10

other examples in this guidance, this example illustrates fitting a model to one dose-response11

pattern.  Note that the rationale for study selection and endpoint selection, while important12

components of any comprehensive BMD calculation write-up, are beyond the scope of this13

quantitative example.14

The outcome modeled was prevalence of malformations, a quantal endpoint.  The nested15

logistic model was considered for the purpose of illustrating fitting these quantal, nested data.  16

Elements of the analysis addressing the reporting requirements in Section II.D. are documented17

in Table A-4.1, including a brief description of the experiment.  The model input and model18

output data are summarized in Table A-4.2.19

The nested logistic model demonstrated a reasonably good visual fit to the mean20

responses of the dose groups (not shown), but the goodness of fit p-value was 0.061, less than the21

value of 0.10 recommended in Section II.E.  Since the coefficients which gauge the influence of22

litter size in predicting the response rate were fairly close to zero (0.0013 and -0.1507,23

respectively, not shown), suggesting that litter size was not important in this case, the model was24

re-fit without litter size.  The resulting fit yielded a p-value of 0.184 ¶, adequate for supporting25

BMD evaluation.  Its AIC (at 450.6) was also slightly lower than the first fit (at 452.5).26

Another variation on this model was also fitted, setting the intralitter correlations (the27

coeff icients phi1 – phi5) to zero.  This fit was not successful, with a goodness of f it p-value of 028

and an AIC of 570.4 (compare to 450.6, above).  The intralitter correlations are therefore29

important for describing the observed variabilit y in this data set. 30
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Figure A-5.1 Developmental Example Model Fit.

The fitted model and the mean responses by dose group are shown in Figure A-5.1.  The1

results for the selected nested logistic fit (the second fit described above) are provided in Table2

A-5.2.3

4

Reference5
6

George JD, Price CJ, Marr MC, Kimmel CA, Schwetz BA, Morrissey RE.  (1992). The7
Developmental Toxicity of Ethylene Glycol Diethyl Ether in Mice and Rabbits.  Fund. App. Tox.8
19:15-25.9

10
11
12
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Table A-5.1:  Summary of benchmark dose estimate, and key to Table 4-21

Study2 Title/Identifier Ethylene glycol diethyl ether, administered to mice
by gavage (in mg/kg/day), days 6-15 of gestation
(George et al., 1992)

Rationale for study selection Selected by developmental toxicologist as an
adequate study

Rationale for endpoints (effects) Skeletal malformations - Developmental toxicologist
selected as an important endpoint

List dose response data used See  
�

 in Table 4-2

Dose -3
Response4
Model5

Form Nested logistic model in BMDS package, see �  in
Table 4-1

Rationale Fits a wide variety of dose-response shapes for nested
data

Estimation procedure Maximum likelihood

Estimates of model parameters with
standard errors

See  �

Goodness-of fit test statistics See  � , � , �

Standardized residuals See  � , �

Choice of6
BMR7

Rationale Quantal data, used default 10% extra risk level.

Benchmark8
Dose9

Lower Confidence Limit Procedure Likelihood profile

BMD 485 mg/kg/day   ( � )   

BMDL 410 mg/kg/day   ( 	 )

Graphics10 Data points See mean response rates and confidence limits in
Figure 4-1

Fitted dose-response model See Figure 4-1

Confidence limits for fitted curve Not provided

11
12
13
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 The probability function is: 1
2
3

 Prob. = alpha + theta1*Rij + [1 - alpha - theta1*Rij]/ 1+exp(-beta-theta2*Rij-rho*log(Dose))],±4
5

          where Rij is the litter specific covariate.6
7

 Restrict Power rho >= 1. 8
9

10
11

 Total number of observations = 10512
 Total number of records with missing values = 013
 Total number of parameters in model = 1014
 Total number of specified parameters = 215

16
17

 Maximum number of iterations = 25018
 Relative Function Convergence has been set to: 1e-00819
 Parameter Convergence has been set to: 1e-00820

21
 User specifies the following parameters:22
          theta1 =          023
          theta2 =          024

25
26
27

                  Default Initial Parameter Values  28
                          alpha =    0.037059629
                           beta =     -36.636830
                         theta1 =            0   Specified31
                         theta2 =            0   Specified32
                            rho =      5.5687333
                           phi1 =      0.6409534
                           phi2 =     0.99999635
                           phi3 =     0.15946136
                           phi4 =     0.28471937
                           phi5 =     0.23164138

39
40
41

                          Parameter Estimates ²42
43

       Variable           Estimate             Std. Err. 44
          alpha           0.0370596           0.014236445
           beta            -36.6368            0.28986146
            rho             5.56873             242.74447
           phi1             0.64095            0.10717448
           phi2            0.999996             0.1360349
           phi3            0.159461            0.13018550
           phi4            0.284719                   051
           phi5            0.231641                   052

53
54
55
56

           AIC:          450.56 ³57
58
59

                               Litter Data ´60
61
62

           Lit.-Spec.              Litter                      chi-squared63
   Dose       Cov.     Est._Prob.   Size    Expected   Observed   Residual64
--------------------------------------------------------------------------65
   0.0000    6.0000      0.037         6       0.222         0     -0.234366
   0.0000    8.0000      0.037         8       0.296         0     -0.236967
   0.0000    8.0000      0.037         8       0.296         0     -0.236968
   0.0000    9.0000      0.037         9       0.334         0     -0.237869
   0.0000    9.0000      0.037         9       0.334         0     -0.237870
   0.0000   10.0000      0.037        10       0.371         0     -0.238571
   0.0000   10.0000      0.037        10       0.371         0     -0.238572
   0.0000   11.0000      0.037        11       0.408         0     -0.239073
   0.0000   11.0000      0.037        11       0.408         0     -0.239074
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   0.0000   11.0000      0.037        11       0.408         0     -0.23901
   0.0000   11.0000      0.037        11       0.408         0     -0.23902
   0.0000   11.0000      0.037        11       0.408         0     -0.23903
   0.0000   11.0000      0.037        11       0.408         0     -0.23904
   0.0000   11.0000      0.037        11       0.408         0     -0.23905
   0.0000   11.0000      0.037        11       0.408         0     -0.23906
   0.0000   12.0000      0.037        12       0.445         0     -0.23957
   0.0000   14.0000      0.037        14       0.519         0     -0.24038
   0.0000   14.0000      0.037        14       0.519         0     -0.24039
   0.0000   14.0000      0.037        14       0.519         4      1.612210
   0.0000   15.0000      0.037        15       0.556         0     -0.240611
   0.0000   15.0000      0.037        15       0.556         0     -0.240612
   0.0000   15.0000      0.037        15       0.556         0     -0.240613

14
  50.0000    2.0000      0.037         2       0.074         0     -0.196215
  50.0000    5.0000      0.037         5       0.185         0     -0.196216
  50.0000    9.0000      0.037         9       0.334         0     -0.196217
  50.0000    9.0000      0.037         9       0.334         0     -0.196218
  50.0000    9.0000      0.037         9       0.334         0     -0.196219
  50.0000   10.0000      0.037        10       0.371         0     -0.196220
  50.0000   10.0000      0.037        10       0.371         0     -0.196221
  50.0000   11.0000      0.037        11       0.408         0     -0.196222
  50.0000   12.0000      0.037        12       0.445         0     -0.196223
  50.0000   12.0000      0.037        12       0.445         0     -0.196224
  50.0000   12.0000      0.037        12       0.445         0     -0.196225
  50.0000   12.0000      0.037        12       0.445         0     -0.196226
  50.0000   13.0000      0.037        13       0.482         0     -0.196227
  50.0000   13.0000      0.037        13       0.482         0     -0.196228
  50.0000   13.0000      0.037        13       0.482         0     -0.196229
  50.0000   13.0000      0.037        13       0.482         0     -0.196230
  50.0000   13.0000      0.037        13       0.482         0     -0.196231
  50.0000   14.0000      0.037        14       0.519         0     -0.196232
  50.0000   15.0000      0.037        15       0.556         0     -0.196233

34
 150.0000    3.0000      0.037         3       0.112         0     -0.296535
 150.0000   10.0000      0.037        10       0.372         1      0.672236
 150.0000   10.0000      0.037        10       0.372         0     -0.398437
 150.0000   11.0000      0.037        11       0.409         5      4.539638
 150.0000   11.0000      0.037        11       0.409         4      3.550739
 150.0000   11.0000      0.037        11       0.409         0     -0.404840
 150.0000   12.0000      0.037        12       0.447         1      0.508641
 150.0000   12.0000      0.037        12       0.447         0     -0.410442
 150.0000   12.0000      0.037        12       0.447         0     -0.410443
 150.0000   12.0000      0.037        12       0.447         0     -0.410444
 150.0000   12.0000      0.037        12       0.447         0     -0.410445
 150.0000   12.0000      0.037        12       0.447         0     -0.410446
 150.0000   13.0000      0.037        13       0.484         1      0.443147
 150.0000   13.0000      0.037        13       0.484         0     -0.415348
 150.0000   13.0000      0.037        13       0.484         0     -0.415349
 150.0000   13.0000      0.037        13       0.484         0     -0.415350
 150.0000   13.0000      0.037        13       0.484         0     -0.415351
 150.0000   14.0000      0.037        14       0.521         0     -0.419652
 150.0000   14.0000      0.037        14       0.521         0     -0.419653
 150.0000   15.0000      0.037        15       0.558         1      0.335254
 150.0000   18.0000      0.037        18       0.670         0     -0.433055

56
 500.0000    6.0000      0.149         6       0.893         0     -0.658157
 500.0000    8.0000      0.149         8       1.191         0     -0.683958
 500.0000    9.0000      0.149         9       1.340         6      2.409959
 500.0000   10.0000      0.149        10       1.489         2      0.240460
 500.0000   10.0000      0.149        10       1.489         0     -0.700861
 500.0000   10.0000      0.149        10       1.489         0     -0.700862
 500.0000   11.0000      0.149        11       1.638         7      2.315363
 500.0000   11.0000      0.149        11       1.638         4      1.019964
 500.0000   11.0000      0.149        11       1.638         3      0.588165
 500.0000   11.0000      0.149        11       1.638         2      0.156366
 500.0000   11.0000      0.149        11       1.638         1     -0.275567
 500.0000   11.0000      0.149        11       1.638         0     -0.707368
 500.0000   11.0000      0.149        11       1.638         0     -0.707369
 500.0000   12.0000      0.149        12       1.787         4      0.882870
 500.0000   12.0000      0.149        12       1.787         1     -0.313971
 500.0000   12.0000      0.149        12       1.787         0     -0.712872
 500.0000   12.0000      0.149        12       1.787         0     -0.712873
 500.0000   12.0000      0.149        12       1.787         0     -0.712874
 500.0000   12.0000      0.149        12       1.787         1     -0.313975
 500.0000   13.0000      0.149        13       1.936         6      1.506676
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 500.0000   13.0000      0.149        13       1.936         0     -0.71761
 500.0000   15.0000      0.149        15       2.234         0     -0.72552

3
1000.0000    3.0000      0.867         3       2.601         3      0.56094
1000.0000    3.0000      0.867         3       2.601         3      0.56095
1000.0000    3.0000      0.867         3       2.601         3      0.56096
1000.0000    3.0000      0.867         3       2.601         3      0.56097
1000.0000    3.0000      0.867         3       2.601         3      0.56098
1000.0000    9.0000      0.867         9       7.803         9      0.69589
1000.0000    9.0000      0.867         9       7.803         9      0.695810
1000.0000    9.0000      0.867         9       7.803         8      0.114711
1000.0000   10.0000      0.867        10       8.670        10      0.705312
1000.0000   10.0000      0.867        10       8.670         8     -0.355013
1000.0000   10.0000      0.867        10       8.670         7     -0.885114
1000.0000   10.0000      0.867        10       8.670         5     -1.945415
1000.0000   11.0000      0.867        11       9.536        11      0.713516
1000.0000   11.0000      0.867        11       9.536        11      0.713517
1000.0000   11.0000      0.867        11       9.536         5     -2.211518
1000.0000   12.0000      0.867        12      10.403        12      0.720419
1000.0000   12.0000      0.867        12      10.403        11      0.269220
1000.0000   12.0000      0.867        12      10.403         7     -1.535821
1000.0000   13.0000      0.867        13      11.270        13      0.726522
1000.0000   13.0000      0.867        13      11.270         8     -1.373723
1000.0000   14.0000      0.867        14      12.137        13      0.338924

25
26

Combine litters with adjacent levels of the litter-specific covariate27
within dose groups until the expected count exceeds 3.0, to help improve28
the fit of the X^2 statistic to chi-squared.29

30
31

                                 Grouped Data µ32
33
34

                  Mean                              chi-squared35
     Dose   Lit.-Spec. Cov.     Expected  Observed    Residual 36
  -------------------------------------------------------------37
   0.0000        9.1111            3.039         0     -0.704338
   0.0000       11.5000            3.409         0     -0.674439
   0.0000       14.6000            2.705         4      0.257240

41
  50.0000        8.9000            3.298         0     -0.588242
  50.0000       12.7143            3.298         0     -0.518743
  50.0000       14.5000            1.075         0     -0.277344

45
 150.0000       10.2222            3.424        11      2.597646
 150.0000       12.5714            3.275         1     -0.759147
 150.0000       14.8000            2.754         1     -0.599148

49
 500.0000        7.6667            3.425         6      0.877350
 500.0000       10.0000            4.467         2     -0.670451
 500.0000       11.0000           11.466        17      0.903152
 500.0000       12.0000           10.722         6     -0.768953
 500.0000       13.0000            3.872         6      0.557954
 500.0000       15.0000            2.234         0     -0.725555

56
1000.0000        3.0000           13.004        15      1.254257
1000.0000        9.0000           23.408        26      0.869658
1000.0000       10.0000           34.678        30     -1.240059
1000.0000       11.0000           28.609        27     -0.453060
1000.0000       12.0000           31.210        30     -0.315361
1000.0000       13.0000           22.541        21     -0.457762
1000.0000       14.0000           12.137        13      0.338963

64
 Chi-square =      17.35   DF = 13    P-value = 0.1837 ¶65

66
67

To calculate the BMD and BMDL, the litter specific covariate is fixed68
 at the mean litter specific covariate of control group: 11.22727369

70
   Benchmark Dose Computation71

72
Specified effect =            0.173

74
Risk Type        =      Extra risk 75



Table A-5.2: Output from Model Run (EPA BMDS NLogistic Model. Revision: 2.6, Date: 2000/03/03)

79

Confidence level =           0.951
2

             BMD =        485.152 ·3
4

            BMDL =       409.019 ¸5
6
7
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1
6.  Human Data2

3
Opportunities for modeling human toxicological data are limited, and the human studies4

are less standardized than studies of experimental animals; thus modeling of human data is done5
on a case-specific basis.  For some examples of benchmark dose modeling of human data, please6
refer to the following references; although it should be noted that these examples precede this7
benchmark dose modeling guidance and may not strictly adhere to the recommendations8
described herein.  One example presented in EPA’s IRIS database is for peripheral nervous9
system dysfunction induced by carbon disulfide in occupationally exposed workers (U.S.10
Environmental Protection Agency, 1995a).  Another  example in IRIS is for developmental11
neurologic abnormaliti es in human infants from exposure to methylmercury (U.S. Environmental12
Protection Agency, 1995b).  More recent examples of benchmark dose modeling of13
methylmercury developmental neurologic effects from different databases are reported by Crump14
et al. (2000) and Budtz-Jorgensen et al. (2000).15

16
References17

18
IRIS (2000) ...19

20
Budtz-Jorgensen E, Grandjean P, Keiding N, White RF, Weihe P (2000) Benchmark dose21
calculations of methylmercury-associated neurobehavioural deficits. Toxicology Letters 112-22
113:193-199.23

24
Crump KS, Van Landingham C, Shamlaye C, Cox C, Davidson PW, et al. (2000) Benchmark25
concentrations for methylmercury obtained from the Seychelles Child Development Study.26
Environ Health Perspect 108:257-263.27

28
U.S. Environmental Protection Agency (EPA).  (1995a).  Integrated Risk Information System29
(IRIS): Online substance file for carbon disulfide30
(http://www.epa.gov/ngispgm3/iris/index.html).  National Center for Environmental Assessment,31
Washington, DC.  32

33
U.S. Environmental Protection Agency (EPA).  (1995b).  Integrated Risk Information System34
(IRIS): Online substance file for methylmercury (http://www.epa.gov/ngispgm3/iris/index.html). 35
National Center for Environmental Assessment, Washington, DC.  36



81

GLOSSARY1

2
Akaike Information Criteria (AIC) : A statistical procedure that provides a measure of the3
goodness-of-f it of a dose-response model to a set of data.  AIC = -2 × (LL - p), where LL is the4
log-likelihood at the maximum likelihood fit, and p is the degrees of freedom of the model5
(usually, the number of parameters estimated).6

7
Asymptotic Test : Statistical tests that approach known properties as sample sizes increase.8

9
Benchmark Concentration (BMC): The concentration of a substance inhaled that is associated10
with a specified low incidence of risk, generally in the range of 1% to 10%, of a health effect; or11
the concentration associated  with a specified measure or change of a biological effect.12

13
Benchmark Dose (BMD) : An exposure due to a dose of a substance associated with a specified14
low incidence of risk, generally in the range of 1% to 10%, of a health effect; or the dose15
associated  with a specified measure or change of a biological effect.16

17
Benchmark Response (BMR): The response, generally expressed as in excess of background (see18
for example, Extra Risk), at which a benchmark dose or concentration is desired (see Benchmark19
Dose, Benchmark Concentration).20

21
Beta-Binomial Distribution : A statistical distribution of clustered values, e.g., measures on22
offspring in a litter, where the average proportions of an event for clusters are described by a Beta23
distribution and the proportions of events in a cluster are described by a binomial distribution.24

25
Binomial Distribution : The statistical distribution of the probabiliti es of observing 0,1,2,- - - ,n26
events in a sample of n independent trials each with the same individual probabilit y that the event27
occurs.28

29
BMCL: A lower one-sided confidence limit on the BMC.30

31
BMDL: A lower one-sided confidence limit on the BMD.32

33
Bootstrap : A statistical technique based on multiple resampling with replacement of the sample34
values or resampling of estimated distributions of the sample values that is used to calculate35
confidence limits or perform statistical tests for complex situations or where the distribution of36
an estimate or test statistic cannot be assumed.37

38
Cancer Potency ( Cancer Slope Factor ) : A number that estimates  the cancer risk ( incidence )39
for a li fetime exposure to a substance per unit of dose.  dose is generally expressed as mg / kg40
body wt / day. 41

42
Categorical Data : Results obtained where observations or measurements on individuals or43
samples are stratified according to degree or severity of an effect, e.g., none, mild, moderate,or44
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severe.1
2

Chi-square Test : A statistical test used to examine the deviation of an observed number of3
events from an expected number of events. 4

5
Clustered Data : Measurements collected on some grouping of individuals, e.g., litters in6
reproductive and developmental studies.7

8
Confidence Interval ( Two-Sided ) : An estimated interval from the lower to upper confidence9
limit of an estimate of a parameter.  This interval is expected to include the true value of the10
parameter with a specified confidence percentage, e.g., 95% of such intervals are expected to11
include the true values of the estimated parameters.12

13
Confidence Interval ( One-Sided ) : An interval below the estimated upper confidence limit, or14
interval above the estimated lower confidence limit, that is expected to include the true value of15
an estimated parameter with a specified confidence ( percent of the time ). 16

17
Confidence Limit : An estimated value below ( or above ) which the true value of an estimated18
parameter is expected to lie for a specified percentage of such estimated limits.19

20
Constrained Dose-Response Model : Estimates of one or more parameters of the model are21
restricted to a specified range, e.g., equal to or greater than zero.22

23
Continuous Data : Effects Measured on a continuum, e.g., organ weight or enzyme concentration,24
as opposed to quantal or categorical data where effects are classified by assignment to a class.25

26
Convergence : Estimates of a parameter approach a single value with increasing sample size or27
increasing number of computer iterations. 28

29
Convex :  Region of a dose-response relationship that curves upward, i.e., the slope becomes30
steeper with increasing dose.31

32
Correlated Binomial Distribution : Clustered data where the individual values in a cluster ,e.g., a33
litter, each have the same probability of expressing an effect.34

35
Covariate : An independent variable other than dose that may influence the outcome of an effect,36
e.g., age, body weight, or polymorphism. 37

38
Coverage : See confidence intervals or confidence limits. 39

40
Cubic : An effect is a function of a measure raised to the third power. 41

42
Degrees of Freedom : For dose-response model fitting, the number of data points minus the43
number of model parameters estimated from the data. 44

45
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Delta Method : Variance of a function of random variables approximated from the derivatives of1
the function with respect to the random variables and the variances of the random variables.2

3
Dichotomous Data : Quantal data where an effect for an individual may be classified by one of4
two possibilities, e.g., dead or alive, with or without a specific type of tumor.5
 6
Dispersion : Variation ( differences ) from a central ( mean or median ) value.7

8
Dose-Response Model : A mathematical relationship ( function ) that relates ( predicts ) a9
measure of an effect to a dose.10

11
Dose-Response Trend : Relationship between incidence or severity of a biological effect and a12
function of dose.  Simply the slope for a linear dose-response.13

14
EC_x : Effective exposure concentration associated with a biological effect in x% of the15
individuals.  Often used for inhalation exposures based on the airborne concentration.16

17
ED_x : Effective dose associated with a biological effect in x% of the individuals.  Dose may be18
the external exposure often expressed in mg per day of the substance per kg body weight raised19
to a power ( generally 1, 3/4, or 2/3 ) or area under the curve ( AUC ) in blood or target tissue20
where the substance remains in the body over a period of time.21

22
Estimate : An empirical value derived from data for a parameter. 23

24
Excess Risk : Proportion of individuals or animals observed or estimated to possess an effect in25
addition to the spontaneous background risk.26

27
Extra Risk: [P(d)-P(0)]/[1 - P(0)], where P(d) is the risk at a dose = d and P(0) is the background28
risk at zero dose.29
 30
Gamma Distribution : A unimodal statistical distribution ( relative proportion of responders as a31
function of some measure ) that is restricted to effects greater than or equal to zero that can32
describe a wide variety of shapes, e.g., flat, peaked, asymmetrical.33

34
Gaussian ( Normal ) Distribution : A unimodal symmetrical ( bell-shaped ) distribution where the35
most prevalent value is the mean ( average ) and the spread is measured by the standard36
deviation. Mathematically, the distribution varies from minus infinity with zero probability to37
plus infinity with zero probability.38

39
Generalized Estimating Equation ( GEE ) : A statistical technique used for estimating parameters40
that requires only specification of the first two moments of the distribution of the estimator as41
opposed to a complete specification of the distribution.42

43
Goodness-of -Fit : A statistic that measures the dispersion of data about a dose-response curve in44
order to provide a test for rejection of a model due to lack of an adequate fit, e.g., a P-value < 0.1. 45
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Hazard Identification : Detection of an adverse biological effect, or precursor to an adverse1
effect, as a result of exposure to a substance. 2

3
Hill Equation : A dose-response curve, frequently used for enzyme kinetics, that monotonically4
approaches an asymptote ( maximum value ) as a function of dose raised to a power.5

6
Hybrid Model : For continuous data establishes abnormal values based on the extremes in7
controls ( unexposed individuals or animals ) and estimates the risk of abnormal levels as a8
function of dose. 9

10
Incidence : Proportion or probability of individuals or animals exhibiting an effect, that varies11
from zero to one, sometimes expressed as a percent from 0% to 100%.12

13
Independence : The result in one animal or individual does not influence the result in another14
animal or individual.15

16
Intercept Term : The estimated value at zero dose or the dose corresponding to a zero effect.17

18
Least Squares : A statistical procedure that estimates the values of dose-response parameters such19
that the sum of squares of deviations of data points from their estimated values is minimized, i.e.,20
minimizes the estimated variance.21

22
Likelihood Ratio : Ratio of the probability that the observed data arise from a set of model23
parameters relative to the maximum probability that arises from the set of maximum likelihood24
estimates.25

26
Linear Dose-Response Model : The amount of change in a response is proportional to the amount27
of change in some function of dose. 28

29
Linearized Multistage Model : Dose-response model based on the multistage model of30
carcinogenesis that is restricted to a form that is approximately linear at low doses.31

32
Local Maximum : Mathematical solution that maximizes a function in a region that may not be33
the overall global maximum.34

35
Likelihood Function : Relative probabilities that various values of population parameters would36
arise from the sample observations. 37

38
Logistic Model : A sigmoid ( S-shaped ) function that relates the proportion of individuals with a39
specified characteristic to an independent variable, e.g., dose.40

41
Log Transformation : Logarithm of raw data.42

43
Maximum Likelihood Estimate (MLE) : Estimate of a population parameter most likely to have44
produced the sample observations.45
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Michaelis-Menten Equation : A dose-response curve, frequently used for enzyme kinetics, with1
maximum slope at zero dose that approaches a maximum asymptote at increasing dose.2

3
Margin of Exposure (MOE) : Ratio of a dose that produces a specified effect, e.g., a benchmark4
dose, to an expected human dose. 5

6
Moment Estimates : A statistical estimation procedure that equates population moments to7
sample moments.8

9
Monotonic Dose-Response : A dose-response that never decreases as dose increases.  A10
monotonic function may be flat (constant) up to a threshold dose or may be flat at high doses if a11
biological limit, e.g., saturation, is attained.12

13
Multinomial : Animals or individuals may be classified by more than two (binomial) categories,14
e.g., in a reproductive study fetuses may be : dead, alive normal, or alive abnormal.15

16
Nonlinear Dose-Response Model : Mathematical relationship that cannot be expressed simply as17
the change in response being proportional to the amount of change of some function of dose.18

19
Objective Function : Choice of function that is optimized for maximum likelihood estimation.20

21
Ordinal Data : Integers designating the rank, order, or counts. 22

23
P-Value : In testing a hypothesis, the probability of a type I error (false positive) .  The24
probability that the sample (experimental) results are compatible with a specific hypothesis.25

26
Parameter : A value used to numerically describe a population of values, e.g., the mean and27
standard deviation; or a value used to describe a dose-response curve, e.g., the intercept and the28
slope of a linear dose-response.29

30
Point of Departure (POD) : The point on a dose-response curve established from experimental31
data, e.g., the benchmark dose, generally corresponding to an estimated low effect level ( e.g.,32
1% to 10% incidence of an effect ). Depending on the mode of action and available data, some33
form of extrapolation below the POD may be employed for low-dose risk assessment or the POD34
may be divided by a series of uncertainty factors to arrive at a reference dose.35

36
Polynomial : A mathematical function of the sum of a constant, linear term, quadratic term, cubic37
term, etc.38

39
Probability : The proportion (on a scale of 0 to 1) of cases for which a particular event occurs. 40
Zero indicates the event never occurs and one indicates the event always occurs.41

42
Probability Distribution : A mathematical description of the relative probabilities of all possible43
outcomes of a measurement.44

45
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Probit Function : Assumes that the relative probabilities of effects as a function of dose are1
described by a Normal distribution.  The cumulative probability as a function of dose has a2
sigmoid shape.3

4
Profile Likelihood : A plot of the likelihood function versus the estimated value of a parameter.5

6
Quadratic Term : A quantity in a mathematical formula that is raised to the second power (7
squared ).8

9
Quantal Data : Dichotomous ( Binomial ) classification where an individual or animal is placed10
in one of two categories, e.g., dead or alive, with or without a particular type of tumor, normal or11
abnormal level of a hormone. 12

13
Quantile : Percentile ( cumulative probability ) of a distribution that ranges from zero to the14
100th percentile.15

16
Quasi-Likelihood : Likelihood function that is not totally defined and generally based on only an17
expression including the mean and variance. 18

19
Rectangular Hyperbola : A mathematical function of the form y squared equals x squared plus c20
squared, where x and y are variables and c is a constant.21

22
Regression Analysis : A statistical process that produces a mathematical function ( regression23
equation ) that relates a dependent variable ( biological effect ) to independent variable, e.g., dose24
rate, duration of exposure, age.25

26
Repeated Measures : A biological endpoint is measured for the same individual or animal at27
different times ( ages ).28

29
Residual Variance : The variance in experimental measurements remaining after accounting for30
the variance due to the independent variables, e.g., dose rate, duration of exposure, age. 31
Typically referred to as the inherent unaccountable experimental variation.32

33
Residuals : The numerical differences between observed and estimated effects.34

35
Reference Concentration ( RfC ) : An estimate of the concentration of daily exposure to a36
substance ( with uncertainty spanning perhaps an order of magnitude ) for a human population  (37
including sensitive subgroups ) that is likely to be without an appreciable risk of deleterious38
effects during a lifetime.39

40
Reference Dose ( RfD ) : Replace " concentration " by " dose " in the above definition.41

42
Risk : Probability that an animal or individual exhibits a particular adverse effect for a specified43
exposure, expressed on a probability scale of 0 to 1.  May be expressed as the proportion of a44
population effected and often converted to the percent effected.45
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Risk Characterization : The process of combining dose-response information with exposure1
information in order to estimate risk.2

3
S-Plus : Computer software for performing statistical analyses. 4

5
SAS : Computer software for performing statistical analyses. 6

7
Second Degree : A mathematical function that contains a quadratic term. 8

9
Shape Parameter : The exponent on dose in a dose-response function that dictates the curvature10
of the function.11

12
Significance ( Statistical Significance ) : See P-value. 13

14
Threshold Dose : Dose below which a specified biological effect does not occur, generally for a15
particular population.  Hence, the threshold dose is for the most sensitive individual in a16
population.17

18
Uncertainty : The unknown effects of parameters, variables, or relationships that cannot or have19
not been verified or estimated by measurement or experimentation.20

21
Uncertainty Factor : The value ( often a default value of 10 ) used as a divisor of a NOAEL,22
LOAEL, or benchmark dose to calculate a RfC or RfD. Uncertainty factors are applied as needed23
for extrapolation of results in experimental animals to humans, interindividual variability24
including sensitive subgroups, extrapolation from a LOAEL to a NOAEL, extrapolation of25
results from subchronic exposures to chronic exposures, and database inadequacies. 26

27
Unconstrained Dose-Response Model : No restrictions imposed on the estimates of parameters.28

29
Upper-Tail Probability : Probability that a variable exceeds a specified value.30

31
Variability: Observable diversity in biological sensitivity or response, and in exposure parameters32
(such as breathing rates, food consumption, etc.)  These differences can be better understood, but33
generally not reduced by further research.34

35
Variance : Measure of variability , standard deviation squared. 36

37
Weibull : Form of a dose-response curve characterized by a relatively shallow slope at low doses38
that increases sharply as dose increases before leveling off at high doses.39

40
Weighted Least Squares Estimate : Parameter estimate obtained by minimizing the sum of41
squares of observed and estimated values weighted by a function, frequently the reciprocal of the42
variance of an observation.43
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